原理+实践|Exactly-once系列实践之KafkaToKafka

2023-11-23 08:59

本文主要是介绍原理+实践|Exactly-once系列实践之KafkaToKafka,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1886530353e5c510cebead2addbaa01d.png全网最全大数据面试提升手册!

推荐阅读:

  • 原理+实践|Flink-Exactly-Once Kafka2Redis一致性实践

文章目录
一、Kafka输入输出流工具类
二、统计字符个数案例
三、消费者消费kafka的事务数据
四、总结与可能出现的问题

一、Kafka输入输出流工具类

代码如下(示例):

//获取kafkaStream流public static <T> DataStream<T> getKafkaDataStream(ParameterTool parameterTool,Class<? extends DeserializationSchema> clazz,StreamExecutionEnvironment env) throws IllegalAccessException, InstantiationException {//加入到flink的环境全局配置中,后续可以通过上下文获取该工具类,总而得到想要的值env.getConfig().setGlobalJobParameters(parameterTool);//kafka配置项Properties properties = new Properties();properties.setProperty("bootstrap.servers", parameterTool.get("bootstrap.servers"));properties.setProperty("group.id",parameterTool.get("group.idsource"));properties.setProperty("auto.offset.reset",parameterTool.get("auto.offset.reset"));properties.setProperty("enable.auto.commit",parameterTool.get("enable.auto.commit", String.valueOf(false)));String topics = parameterTool.get("Consumertopics");//序列化类实例化DeserializationSchema<T> deserializationSchema = clazz.newInstance();FlinkKafkaConsumer<T> flinkKafkaConsumer = new FlinkKafkaConsumer<>(topics, deserializationSchema, properties);flinkKafkaConsumer.setStartFromEarliest();//开启kafka的offset与checkpoint绑定flinkKafkaConsumer.setCommitOffsetsOnCheckpoints(true);return env.addSource(flinkKafkaConsumer);}//获取kafka生产者通用方法/*** offsets.topic.replication.factor 用于配置offset记录的topic的partition的副本个数* transaction.state.log.replication.factor 事务主题的复制因子* transaction.state.log.min.isr 覆盖事务主题的min.insync.replicas配置** num.partitions 新建Topic时默认的分区数** default.replication.factor 自动创建topic时的默认副本的个数**** 注意:这些参数,设置得更高以确保高可用性!** 其中 default.replication.factor 是真正决定,topi的副本数量的* @param parameterTool* @param kafkaSerializationSchema* @param <T>* @return*/public static <T> FlinkKafkaProducer<T> getFlinkKafkaProducer(ParameterTool parameterTool,KafkaSerializationSchema<T> kafkaSerializationSchema){Properties properties = new Properties();properties.setProperty("bootstrap.servers", parameterTool.get("bootstrap.servers"));properties.setProperty("group.id",parameterTool.get("group.idsink"));
//        properties.setProperty("transaction.max.timeout.ms",parameterTool.get("transaction.max.timeout.ms"));properties.setProperty("transaction.timeout.ms",parameterTool.get("transaction.timeout.ms"));properties.setProperty("client.id", "flinkOutputTopicClient");String topics = parameterTool.get("Producetopice");return new FlinkKafkaProducer<T>(topics,kafkaSerializationSchema,properties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE);}

注意点事项

一、消费者注意项

  1. flinkKafkaConsumer.setCommitOffsetsOnCheckpoints(true),将kafka自动提交offset关闭并且与flink的CheckPoint绑定

  2. bootstrap.servers kafka的broker host

  3. setStartFromEarliest()设置kafka的消息消费从最初位置开始

二、生产者注意项

  1. transaction.timeout.ms 默认情况下Kafka Broker 将transaction.max.timeout.ms设置为15分钟,我们需要将此值设置低于15分钟

  2. FlinkKafkaProducer.Semantic.EXACTLY_ONCE设置kafka为精确一次

二、统计字符个数案例

代码如下(示例):

public static void main(String[] args) throws Exception {//1.创建流式执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//2.设置并行度env.setParallelism(4);//3.设置CK和状态后端CkAndStateBacked.setCheckPointAndStateBackend(env,"FS");//4.获取kafkaStream流InputStream kafkaPropertiesStream = KafkaToKafkaExacitly.class.getClassLoader().getResourceAsStream("kafka.properties");ParameterTool parameterTool=ParameterTool.fromPropertiesFile(kafkaPropertiesStream);//将配置流放到全局flink运行时环境env.getConfig().setGlobalJobParameters(parameterTool);SimpleStringSchema simpleStringSchema = new SimpleStringSchema();Class<? extends SimpleStringSchema> stringSchemaClass = simpleStringSchema.getClass();DataStream<String> kafkaDataStream = KafkaUtil.getKafkaDataStream(parameterTool, stringSchemaClass, env);System.out.println("==================================================");kafkaDataStream.print();//5.map包装成value,1SingleOutputStreamOperator<Tuple2<String, Integer>> tupleStream = kafkaDataStream.map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String value) throws Exception {if("error".equals(value)){throw new RuntimeException("发生异常!!!");}return new Tuple2<>(value, 1);}});tupleStream.print();//6.按照value进行分组,并且统计value的个数SingleOutputStreamOperator<Tuple2<String, Integer>> reduceStream = tupleStream.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> value) throws Exception {return value.f0;}}).reduce(new ReduceFunction<Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) throws Exception {return new Tuple2<>(value1.f0, value1.f1 + value2.f1);}});System.out.println("=====================================================");reduceStream.print();//7.将数据输出到kafkaFlinkKafkaProducer<Tuple2<String, Integer>> flinkKafkaProducer = KafkaUtil.getFlinkKafkaProducer(parameterTool, new KafkaSerializationSchema<Tuple2<String, Integer>>() {@Overridepublic void open(SerializationSchema.InitializationContext context) throws Exception {System.out.println("=========正在向KafkaProduce输出数据!!!=============");}@Overridepublic ProducerRecord<byte[], byte[]> serialize(Tuple2<String, Integer> element, @Nullable Long timestamp) {String producetopics = parameterTool.get("Producetopice");String result = element.toString();return new ProducerRecord<byte[], byte[]>(producetopics, result.getBytes(StandardCharsets.UTF_8));}});reduceStream.addSink(flinkKafkaProducer).name("kafkasinktest").uid("kafkasink");//任务执行env.execute("KafkaToKafkaTest");}

注意事项:
这里使用的是本地FSstateBackend,注意你的路径的设置,以hdfs://或者file://为地址标识符,否则Flink的文件系统将无法识别。

三、消费者消费kafka的事务数据

ublic static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();Properties sourceProperties = new Properties();sourceProperties.setProperty("bootstrap.servers", "*****");sourceProperties.setProperty("group.id", "****");//端到端一致性:消费数据时需要配置isolation.level=read_committed(默认值为read_uncommitted)sourceProperties.put("isolation.level", "read_committed");FlinkKafkaConsumer<String> ConsumerKafka = new FlinkKafkaConsumer<>("*****", new SimpleStringSchema(), sourceProperties);ConsumerKafka.setStartFromEarliest();DataStreamSource<String> dataStreamSource = env.addSource(ConsumerKafka);dataStreamSource.print();env.execute();}

isolation.level这里设置为read_committed(默认为read_uncommitted) 这里可以看到以你CheckPoint设置的时间,来批量展示kafka生产者的消息。

四、总结与可能出现的问题

以上是flink 实现kafka的精确一次的测试例子,这里还有一点要注意,就是小伙伴们的kafka的配置里面。

offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
default.replication.factor=1

这四个参数里面default.replication.factor是你kafka真正每个topic的副本数量,但是在开启事务也就是flink的addsink的时候会默认继承两阶段提交的方式,这里transaction.state.log.replication.factor一定要大于或者等于transaction.state.log.min.isr,否则你的kafka集群不满足事务副本复制的基本属性,会一直不成功,那么你的CheckPoint就会超时过期,从而导致任务的整体失败。

kafka集群第一次有消费者消费消息时会自动创建 __consumer_offsets,它的副本因子受 offsets.topic.replication.factor 参数的约束,默认值为3(注意:该参数的使用限制在0.11.0.0版本发生变化),分区数可以通过 offsets.topic.num.partitions 参数设置,默认值为50,在开启事务性的情况下就会首先会获得一个全局的TransactionCoordinator id和transactional producer并且生成唯一的序列号等 类似于一下的例子来唯一标识当前事务的消息对应的offset,以及标识。

[2022-03-24 21:07:40,022] INFO [TransactionCoordinator id=0] Initialized transactionalId Keyed Reduce -> (Sink: Print to Std. Out, Sink: kafkasinktest)-b0c5e26be6392399cc3c8a38581a81c2-8 with producerId 11101 and producer epoch 8 on partition __transaction_state-18 (kafka.coordinator.transaction.TransactionCoordinator)

当flink任务出现异常的情况下,kafka会把以及提交但是未标记可以消费的数据直接销毁,或者正常的情况下,会正式提交(本质是修改消息的标志位),之后对于消费者在开启isolation.level的时候就可以读取以及标记为可以读取的message。

如果这个文章对你有帮助,不要忘记 「在看」 「点赞」 「收藏」 三连啊喂!

714cd7647fc638997cb45c1665fe2866.png

c2178796715d446702bee58109e41f47.jpeg

2022年全网首发|大数据专家级技能模型与学习指南(胜天半子篇)

互联网最坏的时代可能真的来了

我在B站读大学,大数据专业

我们在学习Flink的时候,到底在学习什么?

193篇文章暴揍Flink,这个合集你需要关注一下

Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS

Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点

我们在学习Spark的时候,到底在学习什么?

在所有Spark模块中,我愿称SparkSQL为最强!

硬刚Hive | 4万字基础调优面试小总结

数据治理方法论和实践小百科全书

标签体系下的用户画像建设小指南

4万字长文 | ClickHouse基础&实践&调优全视角解析

【面试&个人成长】2021年过半,社招和校招的经验之谈

大数据方向另一个十年开启 |《硬刚系列》第一版完结

我写过的关于成长/面试/职场进阶的文章

当我们在学习Hive的时候在学习什么?「硬刚Hive续集」

这篇关于原理+实践|Exactly-once系列实践之KafkaToKafka的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/416802

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再