Positive predictive value

2023-11-23 04:40
文章标签 value positive predictive

本文主要是介绍Positive predictive value,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文转载于:http://en.wikipedia.org/wiki/Positive_predictive_value


Positive predictive value

From Wikipedia, the free encyclopedia

In statistics and diagnostic testing, the positive predictive value, or precision rate is the proportion of positive test results that are true positives (such as correct diagnoses). It is a critical measure of the performance of a diagnostic method, as it reflects the probability that a positive test reflects the underlying condition being tested for. Its value does however depend on the prevalence of the outcome of interest, which may be unknown for a particular target population. The PPV can be derived using Bayes' theorem.

Although sometimes used synonymously, a positive predictive value generally refers to what is established by control groups, while a post-test probability rather refers to a probability for an individual. Still, if the individual's pre-test probability of the target condition is the same as the prevalence in the control group used to establish the positive predictive value, the two are numerically equal.

Contents

   [hide] 
  • 1 Definition
  • 2 Worked example
  • 3 Problems with positive predictive value
    • 3.1 Other individual factors
    • 3.2 Different target conditions
  • 4 See also
  • 5 References and notes

Definition[edit]

The Positive Predictive Value is defined as

 {\rm PPV} = \frac{\rm number\ of\ True\ Positives}{​{\rm number\ of\ True\ Positives}+{\rm number\ of\ False\ Positives}} = \frac{\rm number\ of\ True\ Positives}{\rm number\ of\ positive\ calls}

where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

The following diagram illustrates how the positive predictive value, negative predictive value, sensitivity, and specificity are related.


  Condition
(as determined by "Gold standard")
Condition Positive Condition Negative
Test
Outcome
Test
Outcome
Positive
True Positive False Positive
(Type I error)
Positive predictive value =
Σ True Positive
Σ Test Outcome Positive
Test
Outcome
Negative
False Negative
(Type II error)
True Negative Negative predictive value =
Σ True Negative
Σ Test Outcome Negative
  Sensitivity =
Σ True Positive
Σ Condition Positive
Specificity =
Σ True Negative
Σ Condition Negative

Note that the positive and negative predictive values can only be estimated using data from a cross-sectional study or other population-based study in which valid prevalence estimates may be obtained. In contrast, the sensitivity and specificity can be estimated from case-control studies.

If the prevalence, sensitivity, and specificity are known, the positive predictive value can be obtained from the following identity:

 {\rm PPV} = \frac{({\rm sensitivity}) ({\rm prevalence})}{({\rm sensitivity}) ({\rm prevalence}) + (1 - {\rm specificity}) (1-{\rm prevalence})}

Worked example[edit]

Suppose the fecal occult blood (FOB) screen test is used in 2030 people to look for bowel cancer:

  Patients with bowel cancer
(as confirmed on endoscopy)
Condition Positive Condition Negative
Fecal
Occult
Blood
Screen
Test
Outcome
Test
Outcome
Positive
True Positive
(TP) = 20
False Positive
(FP) = 180
Positive predictive value
= TP / (TP + FP)
= 20 / (20 + 180)
10%
Test
Outcome
Negative
False Negative
(FN) = 10
True Negative
(TN) = 1820
Negative predictive value
= TN / (FN + TN)
= 1820 / (10 + 1820)
≈  99.5%
  Sensitivity
= TP / (TP + FN)
= 20 / (20 + 10)
≈  67%
Specificity
= TN / (FP + TN)
= 1820 / (180 + 1820)
91%

The small positive predictive value (PPV = 10%) indicates that many of the positive results from this testing procedure are false positives. Thus it will be necessary to follow up any positive result with a more reliable test to obtain a more accurate assessment as to whether cancer is present. Nevertheless, such a test may be useful if it is inexpensive and convenient. The strength of the FOB screen test is instead in its negative predictive value - which, if negative for an individual, gives us a high confidence that its negative result is true.

Problems with positive predictive value[edit]

Other individual factors[edit]

Note that the PPV is not intrinsic to the test—it depends also on the prevalence.[1] Due to the large effect of prevalence upon predictive values, a standardized approach has been proposed, where the PPV is normalized to a prevalence of 50%.[2] PPV is directly proportional to the prevalence of the disease or condition. In the above example, if the group of people tested had included a higher proportion of people with bowel cancer, then the PPV would probably come out higher and the NPV lower. If everybody in the group had bowel cancer, the PPV would be 100% and the NPV 0%.

To overcome this problem, NPV and PPV should only be used if the ratio of the number of patients in the disease group and the number of patients in the healthy control group used to establish the NPV and PPV is equivalent to the prevalence of the diseases in the studied population, or, in case two disease groups are compared, if the ratio of the number of patients in disease group 1 and the number of patients in disease group 2 is equivalent to the ratio of the prevalences of the two diseases studied. Otherwise, positive and negative likelihood ratios are more accurate than NPV and PPV, because likelihood ratios do not depend on prevalence.

When an individual being tested has a different pre-test probability of having a condition than the control groups used to establish the PPV and NPV, the PPV and NPV are generally distinguished from the positive and negative post-test probabilities, with the PPV and NPV referring to the ones established by the control groups, and the post-test probabilities referring to the ones for the tested individual (as estimated, for example, by likelihood ratios). Preferably, in such cases, a large group of equivalent individuals should be studied, in order to establish separate positive and negative predictive values for use of the test in such individuals.

Different target conditions[edit]

PPV is used to indicate the probability that in case of a positive test, that the patient really has the specified disease. However there may be more than one cause for a disease and any single potential cause may not always result in the overt disease seen in a patient. There is potential to mixup related target conditions of PPV and NPV, such as interpreting the PPV or NPV of a test as having a disease, when that PPV or NPV value actually refers only to a predisposition of having that disease.

An example is the microbiological throat swab used in patients with a sore throat. Usually publications stating PPV of a throat swab are reporting on the probability that this bacteria is present in the throat, rather than that the patient is ill from the bacteria found. If presence of this bacteria always resulted in a sore throat, then the PPV would be very useful. However the bacteria may colonise individuals in a harmless way and never result in infection or disease. Sore throats occurring in these individuals is caused by other agents such as a virus. In this situation the gold standard used in the evaluation study represents only the presence of bacteria (that might be harmless) but not a causal bacterial sore throat illness. It can be proven that this problem will affect positive predictive value far more than negative predictive value. To evaluate diagnostic tests where the gold standard looks only at potential causes of disease, one may use an extension of the predictive value termed the

这篇关于Positive predictive value的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415408

相关文章

为 Key-Value 数据库实现MVCC 事务

ACID是软件领域使用最广泛的技术之一,它是关系数据库的基石,是企业级中间件不可或缺的部分,但通常通过黑盒的方式提供。但是在许多情况下,这种古老的事务方式已经不能够适应现代大规模系统和NoSQL数据库的需要了,现代系统要求更高的性能要求,更大的数据量,更高的可用性。在这种情况下,传统的事务模型被定制的事务或者半事务模型所取代,而在这些模型中事务性并不像以往那样被看重。   在本文中我们会讨论一

兔子-(PHP 5.3 and above) Please set 'request_order' ini value to include C,G and P (recommended: 'CGP'

由于在PHP最新的版本中增加了一个配置项目“request_order”,默认值为“GP”,这个存在一定的安全风险。这里我们建议用户将配置更改为“CGP” 可以在php的安装目录下找到php.ini配置目录,找到下面选项: request_order = "GP"  更改为 request_order = "CGP"   重启服务器后即可。 此

MySql 1264 - Out of range value for column 异常

前段时间操作数据库,本是一个很简单的修改语句,却报了  1264 - Out of range value for column字段类型官网  当时一看懵逼了,网上很多都说是配置的问题,需要修改my.ini文件,这个方式我没有试过,我想肯定还有其它方法,经过慢慢排 查发现表里的字段为 decimal(10,3) ,这说明小数点前只有7位,保留了3位小数点,而值在小数点前却有8位,这就导致了错误

LeetCode - 41. First Missing Positive

41. First Missing Positive  Problem's Link  ---------------------------------------------------------------------------- Mean:  给你一组整数,找出第一个空缺的正整数. 要求:时间O(n),空间O(n). analyse: 这题时间O(n)想了

FUSEE: A Fully Memory-Disaggregated Key-Value Store——论文阅读

FAST 2023 Paper 论文阅读笔记整理 问题 分布式内存键值(KV)存储正在采用分离式内存(DM)体系结构以提高资源利用率。然而,现有的DM上的KV存储采用半分离式设计,在DM上存储KV对,但在单个元数据服务器上管理元数据,因此仍然在元数据服务器上遭受低资源效率的问题。 如图1a,Clover[60]采用半分离式设计,在计算节点(CN)上部署客户端,在内存节点(MN)上存储KV对,

Path With Maximum Minimum Value

Given a matrix of integers A with R rows and C columns, find the maximum score of a path starting at [0,0] and ending at [R-1,C-1]. The score of a path is the minimum value in that path.  For example

Redis的incr命令引发的反序列化异常和ERR value is not an integer or out of range异常

在Java中使用inc命令的时候发现redis中的值被反序列化后居然不是数字,检查后发现可能是序列化器没对,在redis配置的地方将序列化器设置为 Jackson2JsonRedisSerializer后使用整成,贴上代码 @Bean(name = "RedisTemplate")@SuppressWarnings("all")public RedisTemplate<String,

Cocos2dx 3.0游戏开发找小三之容器篇:Vector、Map、Value 及 网络通信

重开发者的劳动成果,转载的时候请务必注明出处:http://blog.csdn.net/haomengzhu/article/details/27705613 通信方式 主要有以下三大类: (一)SERVER/CLIENT方式: 1.一个Client方连接一个Server方,或称点对点(peer to peer)。 2.多个Client方连接一个Server方,这也是通常的

[转载]最通俗易懂的p value讲解

什么是p value? 这个问题,曾一度让我怀疑我根本都没有学懂知识,只是像规则一样记住然后胡乱使用而已。此番记录就当再次考验我是否真正理解到p value的含义。 p value,代表在原假设条件下,实验事件可能发生的概率。举例说明:抛一枚硬币,正面朝上和反面朝上的概率是一样的,各50%,但这是有前提条件的,即硬币是均匀的(原假设),才能保证正反面出现的概率相同。现在将该硬币抛掷5次,那

getLocation:fail, the permission value is offline verifying

getLocation:fail, the permission value is offline verifying 后端会根据appid和secret生成 签名,前端wx配置时一定用appid来验证签名的正确 本次错误为配置初始化失败:前端与后端的appId不一致,我的失误也