【H.264/AVC视频编解码技术详解】十五、H.264的变换编码(二):H.264整数变换和量化的实现

本文主要是介绍【H.264/AVC视频编解码技术详解】十五、H.264的变换编码(二):H.264整数变换和量化的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《H.264/AVC视频编解码技术详解》视频教程已经在“CSDN学院”上线,视频中详述了H.264的背景、标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看!

“纸上得来终觉浅,绝知此事要躬行”,只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会!

链接地址:H.264/AVC视频编解码技术详解

GitHub代码地址:点击这里


一、H.264的整数变换

变换和量化编码在图像和视频的压缩编码中具有重要作用。通过变换编码,空间域信息可以被转换到频率域,使其能量集中于低频区域,并使其码率相对于空间信号有大幅下降。H.264定义了4×4的整数离散余弦变换(简称整数变换),相对浮点数的离散余弦变换,整数变换具有更低的运算复杂度,更适用于移动设备等适用于低功耗的设备运行。

H.264的整数变换的主要流程如下图所示:

标准的离散余弦变换经过多重运算和修正后,可以用下式表示:

在上式中,右侧的矩阵通常可以表示为常量矩阵,且并入量化中实现,左侧的变换只剩下加减和位移操作。通过这种方式构成了实际的整数变换操作。很明显,相对于原始的DCT变换,该变换的运算量明显要小得多。


二、量化

量化运算实际上并非视频压缩领域首先使用的。在通信信号处理等领域,量化技术早就获得广泛的应用。在模拟-数字信号转化过程中,首先需要对模拟信号按照某个频率进行采样,获得离散时间信号,其取值范围为一个连续区间。此时的离散时间信号尚不能称之为数字信号。

为了对信号进行数字化,必须对离散时间信号进行量化,将连续的取值范围区间也进行离散化。这样的取值位置离散,采样值也是离散的信号称之为数字信号。

在一维信号的量化过程中,我们就已经知道,对于同一模拟信号,使用不同的参数进行量化的结果可能差别非常大,如下图:

上图的量化步长更小,因此失真明显比量化步长更大的下图更小。

在H.264中,量化方法选择了运算较为简单的标量量化。通常标量量化的原理为:

FQ = round(y/QStep)

在上式中,y表示待量化的原始数值,FQ为量化后的值,QP为量化参数。量化的相反过程称之为反量化,其原理为:

y' = QStep × FQ

量化与反量化关键的因素在于量化参数QP。量化参数决定了量化步长,而量化步长决定了量化过程的精细度:QP越小,量化步长越小,量化过程中的真实数据损失越小。QP每增加6,量化步长增大一倍。在H.264中,通常亮度分量的QP取值范围为[0,51],色度分量QP的取值范围为[0,39]。

在H.264的量化过程中,还需要实现变换中的Ef矩阵按元素相乘的操作。量化和矩阵Ef的运算可通过与量化参数QP相关的预定义矩阵实现。

16×16模式与色度分量的变换量化

对于4×4模式的色度分量与16×16模式,其变换量化方法与4×4模式的亮度分量有些不同。

对于16×16的亮度块,变换量化的块包括两个部分:直流部分DC和交流部分AC。16×16亮度块的变换和量化依然要分为16个4×4个子块实现,而与4×4模式不同的是,16×16模式首先抽取出16个4×4系数矩阵的直流分量,组成一个新的4×4矩阵,再对这个直流矩阵进行Hadamard变换后再进行量化。Hadamard变换的原理如下式:

对于4×4模式的色度分量,同样需要抽取直流分量进行Hadamard变换然后再进行量化。然而色度分量的大小为8×8,每个分量分为4个4×4个子块,因此Hadamard变换的直流分量矩阵为2×2大小:

这篇关于【H.264/AVC视频编解码技术详解】十五、H.264的变换编码(二):H.264整数变换和量化的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415373

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构