常用图算法实现--Spar

2023-11-23 03:21
文章标签 算法 实现 常用 spar

本文主要是介绍常用图算法实现--Spar,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用Spark实现PageRank,强连通分量等图算法

PageRank

数据准备

边:

1 2
1 15
2 3
2 4
2 5
2 6
2 7
3 13
4 2
5 11
5 12
6 1
6 7
6 8
7 1
7 8
8 1
8 9
8 10
9 14
9 1
10 1
10 13
11 12
11 1
12 1
13 14
14 12
15 1

网页:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

将这两个文件放入HDFS:

hdfs dfs -mkdir input/PageRank
hdfs dfs -put links.txt input/PageRank
hdfs dfs -put pages.txt input/PageRank

编写程序

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;import static java.lang.Math.abs;public class PageRank {private static int MaxIteration = 100;private static final double DAMPENING_FACTOR = 0.85;private static final double EPSILON = 0.0001;public static void main(String[] args) {SparkConf conf = new SparkConf().setAppName("PageRank");JavaSparkContext sc = new JavaSparkContext(conf);sc.setLogLevel("WARN");String linksFile = "hdfs:///user/hadoop/input/PageRank/links.txt";String pagesFile = "hdfs:///user/hadoop/input/PageRank/pages.txt";String rankFile = "hdfs:///user/hadoop/output/Graph/SparkPageRank";/***  neighborRDD: (from, s)*  linksRDD: tuple (from, [to,1/m])*  pageRDD: vertex*  pageRankRDD: (point, 1/n)*/JavaPairRDD<Integer, Integer> neighborRDD = sc.textFile(linksFile).mapToPair(line -> new Tuple2<>(Integer.parseInt(line.split(" ")[0]), 1)).reduceByKey((x, y) -> x + y);JavaPairRDD<Integer, Tuple2<Integer, Integer>> linksRDD = sc.textFile(linksFile).mapToPair(line -> new Tuple2<>(Integer.parseInt(line.split(" ")[0]),Integer.parseInt(line.split(" ")[1]))).join(neighborRDD);JavaRDD<Integer> pagesRDD = sc.textFile(pagesFile).map(line -> Integer.parseInt(line));long pageCount = pagesRDD.count();JavaPairRDD<Integer, Double> pageRankRDD = pagesRDD.mapToPair(vertex -> new Tuple2<>(vertex, 1.0 / pageCount));int count = 0;while (count < MaxIteration) {JavaPairRDD<Integer, Double> NewPageRankRDD = linksRDD.join(pageRankRDD).mapToPair(new PairFunction<Tuple2<Integer, Tuple2<Tuple2<Integer, Integer>, Double>>, Integer, Double>() {@Overridepublic Tuple2<Integer, Double> call(Tuple2<Integer, Tuple2<Tuple2<Integer, Integer>, Double>> ans) throws Exception {
//                               // [ toNode, fraction * rank]return new Tuple2<>(ans._2._1._1, ans._2._2/ans._2._1._2);}}).reduceByKey((v1, v2) -> v1 + v2).mapValues(new Function<Double, Double>() {double dampening = DAMPENING_FACTOR;double randomJump = (1 - DAMPENING_FACTOR) / pageCount;@Overridepublic Double call(Double value) throws Exception {value = value * dampening + randomJump;return value;}});count++;JavaPairRDD<Integer, Tuple2<Double, Double>> compare = pageRankRDD.join(NewPageRankRDD).filter(each -> abs(each._2._1 - each._2._2) > EPSILON);if (compare.isEmpty() || count > MaxIteration)break;pageRankRDD = NewPageRankRDD;}pageRankRDD.saveAsTextFile(rankFile);}
}

思路:

  1. 全部使用Lambda表达式进行,首先需要找到所有的边的条数,初始化Rank值
  2. 然后使用Join进行合并,并计算下一轮Rank
  3. 使用DAMPENING_FACTOR进行随机跳转

运行

spark-submit  --class PageRank PageRank-1.0.jar
hdfs dfs -cat output/Graph/SparkPageRank/*

结果为:

54622233513

ConnectedComponents

数据准备

提供基本数据集,与PageRank一样,指定顶点和边

vertices.txt

准备一些顶点,例如1-16

edges.txt

准备一些连接边:

1 2
2 3
2 4
3 5
6 7
8 9
8 10
5 11
11 12
10 13
9 14
13 14
1 15
16 1

将这两个文件放入HDFS:

hdfs dfs -mkdir input/ConnectedComponents
hdfs dfs -put edges.txt input/ConnectedComponents
hdfs dfs -put vertices.txt input/ConnectedComponents

编写程序

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;import static java.lang.StrictMath.min;public class ConnectedComponents {public static int MaxIteration = 100;public static void main(String[] args) {SparkConf conf = new SparkConf().setAppName("ConnectedComponents");JavaSparkContext sc = new JavaSparkContext(conf);sc.setLogLevel("WARN");String edgesFile = "hdfs:///user/hadoop/input/ConnectedComponents/edges.txt";String verticesFile = "hdfs:///user/hadoop/input/ConnectedComponents/vertices.txt";String outFile = "hdfs:///user/hadoop/output/Graph/SparkConnectedComponents";/*** edgesRDD: [x,y]* componentsRDD: [x,x] init*/JavaPairRDD<Integer, Integer> edgesRDD = sc.textFile(edgesFile).mapToPair(line -> new Tuple2<>(Integer.parseInt(line.split(" ")[0]),Integer.parseInt(line.split(" ")[1])));JavaPairRDD<Integer, Integer> componentsRDD = sc.textFile(verticesFile).mapToPair(line -> new Tuple2<>(Integer.parseInt(line), Integer.parseInt(line)));int count = 0;while (count < MaxIteration) {JavaPairRDD<Integer, Integer> newcomponentsRDD = componentsRDD.join(edgesRDD).mapToPair(x -> new Tuple2<>(x._2._2, x._2._1)).reduceByKey((v1, v2) -> min(v1, v2));JavaPairRDD<Integer, Tuple2<Integer, Integer>> filterRDD = newcomponentsRDD.join(componentsRDD).filter(each -> each._2._1 < each._2._2);if (filterRDD.isEmpty())break;// update to componentsRDDcomponentsRDD = componentsRDD.leftOuterJoin(newcomponentsRDD).mapValues(v -> min(v._1, v._2.orElse(v._1)));count++;}componentsRDD.saveAsTextFile(outFile);}
}

思路:

  1. 首先需要将每个点映射成自己的强连通分支
  2. 每次迭代,更新与自己相连的点的强连通分支,取最小值
  3. 使用左连接更新原始的强连通分支

运行

spark-submit  --class ConnectedComponents ConnectedComponents-1.0.jar
hdfs dfs -cat output/Graph/SparkConnectedComponents/*

查看结果:

54622728559

SingleSourceShortestPaths

数据准备

首先我们需要准备边和点

边:

1 2 12.0
1 3 13.0
2 3 23.0
3 4 34.0
3 5 35.0
4 5 45.0
5 1 51.0

点:

1
2
3
4
5

将这两个文件放入HDFS:

hdfs dfs -mkdir input/SingleSourceShortestPaths
hdfs dfs -put edges.txt input/SingleSourceShortestPaths
hdfs dfs -put vertices.txt input/SingleSourceShortestPaths

编写程序

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;import javax.validation.constraints.Max;import static java.lang.StrictMath.min;public class SingleSourceShortestPaths {public static int sourceVerticeID = 1;public static int MaxIteration = 100;public static void main(String[] args) throws Exception {SparkConf conf = new SparkConf().setAppName("ConnectedComponents");JavaSparkContext sc = new JavaSparkContext(conf);sc.setLogLevel("WARN");String edgesFile = "hdfs:///user/hadoop/input/SingleSourceShortestPaths/edges.txt";String verticesFile = "hdfs:///user/hadoop/input/SingleSourceShortestPaths/vertices.txt";String outFile = "hdfs:///user/hadoop/output/Graph/SparkSingleSourceShortestPaths";/*** edgesRDD: [from, to, dis ]* verticesRDD: [vertice, dis]*/JavaPairRDD<Integer, Tuple2<Integer, Double>> edgesRDD = sc.textFile(edgesFile).mapToPair(line -> {int from = Integer.parseInt(line.split(" ")[0]);int to = Integer.parseInt(line.split(" ")[1]);double dis = Double.parseDouble(line.split(" ")[2]);return new Tuple2<>(from, new Tuple2<>(to, dis));});JavaPairRDD<Integer, Double> verticesRDD = sc.textFile(verticesFile).mapToPair(line -> {int vertice = Integer.parseInt(line);if (vertice == sourceVerticeID)return new Tuple2<>(vertice, 0.0);return new Tuple2<>(vertice, Double.POSITIVE_INFINITY);});int count = 0;while (count < MaxIteration) {// get new disJavaPairRDD<Integer, Double> newVerticesRDD = verticesRDD.join(edgesRDD).mapToPair(line -> {if (line._2._1 != Double.POSITIVE_INFINITY)return new Tuple2<>(line._2._2._1, line._2._1 + line._2._2._2);return new Tuple2<>(line._2._2._1, Double.POSITIVE_INFINITY);}).reduceByKey((v1, v2) -> min(v1, v2));JavaPairRDD<Integer, Tuple2<Double, Double>> filterRDD = newVerticesRDD.join(verticesRDD).filter(each -> each._2._1 < each._2._2);if (filterRDD.isEmpty())break;// update to verticesRDDverticesRDD = verticesRDD.leftOuterJoin(newVerticesRDD).mapValues(v -> min(v._1, v._2.orElse(v._1)));}verticesRDD.saveAsTextFile(outFile);}
}

思路:

  1. 首先需要初始化每个顶点的距离,将原始点设置为0,其余设置为无穷
  2. 每次迭代得到新的顶点距离,并使用reduceByKey最小化,比较是否更新
  3. 然后将更新得到的顶点距离加入原始RDD中

运行

spark-submit  --class SingleSourceShortestPaths SingleSourceShortestPaths-1.0.jar
hdfs dfs -cat output/Graph/SparkSingleSourceShortestPaths/*

查看结果:

54623040420

这篇关于常用图算法实现--Spar的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414994

相关文章

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

Python3脚本实现Excel与TXT的智能转换

《Python3脚本实现Excel与TXT的智能转换》在数据处理的日常工作中,我们经常需要将Excel中的结构化数据转换为其他格式,本文将使用Python3实现Excel与TXT的智能转换,需要的可以... 目录场景应用:为什么需要这种转换技术解析:代码实现详解核心代码展示改进点说明实战演练:从Excel到

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi