图处理:rigraph实现边介数社区发现算法(GN)

2023-11-23 02:31

本文主要是介绍图处理:rigraph实现边介数社区发现算法(GN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图处理:rigraph实现边介数社区发现算法(GN)


  • 节点介数和边介数
  • rigraph实现
  • 边介数的计算

按照边介数来划分社区是个有趣的话题。根据rigraph可以轻松的实现这一功能,更详细的内容请参考edge.betweenness.community 。

节点介数和边介数

节点介数已在图处理:使用graphstream来计算无向图的介数中心性一文中,有浅显的介绍。就不在这里重复了,而边介数参考betweenness - igraph和edge_betweenness_centrality — NetworkX 。

参考:

[1]. A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001.
[2]. Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.

在节点的最短路径中,边介数是通过边E的总和

cB(e)=s,tVσ(s,t|e)σ(s,t)

其中V是节点的集合, σ(s,t) 是节点(s,t)之间最短路径的个数。 σ(s,t|e) 节点(s,t)之间,通过边e的,最短路径的个数[2]。

rigraph实现

喜欢python的同学可以使用networkx。这里将列出rigraph的实现

> library(igraph)
> g <- graph.formula(0-5,5-4,4-3,3-2,2-1,1-6)
> V(g)
> E(g)
> ecount(g)
> is.weighted(g)
> ebc <- edge.betweenness.community(g)
> library(ape)
> membership(ebc)
0 5 4 3 2 1 6 
1 1 1 2 2 3 3 
> dendPlot(ebc, mode="hclust")

wg_betweenness_communities.png)

边介数的计算

参考:
1. M Newman and M Girvan: Finding and evaluating community structure in networks, Physical Review E 69, 026113 (2004)
2. r - edge betweenness community cut off point - Stack Overflow
3. 汪小帆. 复杂网络理论及其应用[M]. 清华大学出版社, 2006.

边介数的公式[1],初学是有点难于理解。

cB(e)=s,tVσ(s,t|e)σ(s,t)

其实,edge.betweenness.community 是Girvan和Newman(GN)提供算法的一种实现。GN方法就是一种分裂方法。它的基本思想是不断地从网络中移除介数(Betweenness)最大的边。边介数定义为网络中经过每条边的最短路径的数目[3]。

GN算法的基本流程如下:
1. 计算网络中所有边的介数;
2. 找到介数最高的边并将它从网络中移除;
3. 重复步骤2,直到每个节点就是一个退化的社团为止。

下面,将步骤减慢一步一步的分解[2]。

> g <- graph.formula(0-5,5-4,4-3,3-2,2-1,1-6)
> edge.betweenness(g)
[1]  6 10 12 12 10  6
#12最大,去掉4-3这条边
> edge.betweenness(graph.formula(0-5,5-4,3-2,2-1,1-6))
[1] 2 2 3 4 3
#4最大,去掉2-1这条边
> edge.betweenness(graph.formula(0-5,5-4,3-2,1-6))
[1] 2 2 1 1
#2最大,去掉0-5这条边
> edge.betweenness(graph.formula(5-4,3-2,1-6))
[1] 1 1 1
#1最大,去掉5-4这条边
> edge.betweenness(graph.formula(3-2,1-6))
[1] 1 1
#1最大,去掉3-2这条边
> edge.betweenness(graph.formula(1-6))
[1] 1

g-betweenness-cut.png

这篇关于图处理:rigraph实现边介数社区发现算法(GN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414708

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义