iOS人工智能交流模型4-用CC_ANN实现DNN网络

2023-11-23 01:00

本文主要是介绍iOS人工智能交流模型4-用CC_ANN实现DNN网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  1. 神经网络学习
  2. 常用模型分析
  3. iOS中的CoreML等闭源库
  4. 通过bench_ios中的CC_ANN使用激活函数ReLU和Sigmoid实现DNN网络。
  5. caffe、tensorflow等对比

目录:

  1. 介绍一个CC_ANN使用例子
  2. 回顾神经网络的构成
  3. 进行一次完整计算

CC_ANN是用oc封装的一层和多层神经网络例子,支持激活函数Sigmoid和ReLU

调用例子

//一次乘法的学习
//创建一个ANN网络
CC_ANN *ann=[[CC_ANN alloc]init];//学习100次
int count=100
[ann autoTrainTwoToOne:@[@[@[@(0.2),@(0.6)],@(0.12)],@[@[@(0.4),@(0.6)],@(0.24)],@[@[@(0.3),@(0.4)],@(0.12)]] activeFunction:ActiveFunctionTypeSigmoid trainTimes:count];
double predict1=[ann calWithInput:@[@(0.2),@(0.6)]];
double predict2=[ann calWithInput:@[@(0.4),@(0.6)]];
double predict3=[ann calWithInput:@[@(0.3),@(0.4)]];
double predict4=[ann calWithInput:@[@(0.4),@(0.5)]];
NSLog(@"p1=%f p2=%f p3=%f p4=%f",predict1,predict2,predict3,predict4);

//打印结果
p1=0.121306 p2=0.237448 p3=0.122096 p4=0.208426
耗时0.002秒

//学习1000次
int count=1000
//打印结果
p1=0.120000 p2=0.239999 p3=0.120001 p4=0.209638
耗时0.026秒

//学习10000次
int count=10000
//打印结果
p1=0.120000 p2=0.240000 p3=0.120000 p4=0.209638
耗时0.28秒

例子结论:

  1. 学习次数越多,对例子的还原越正确。如2*6越来越接近12
  2. 学习次数到达一定次数后,对预测的精确度不会再提高。如我们没有教过4*5,但是预测答案接近20,在学习1000次后,达到20.9638,但是学习10000次也没有将精度再次提高

这个例子符合神经网络的特征

下面看下如何构建一层神经网络,具体的计算方法。
img1

线性函数和sigmoid函数
LinearRegression模型:img2
sigmoid函数:img3

隐层决定了最终的分类效果
img4

可以看到,隐层越多,分类效果越好,因为可以转折的点更多。实际上,Kolmogorov理论指出:双隐层感知器就足以解决任何复杂的分类问题。
但是,过多的隐层和神经元结点会带来过拟合问题,不要试图降低神经网络参数量来减缓过拟合,用正则化或者dropout。

神经网络结构
img5

传递函数/激活函数
每一层传递使用wx+b,对每一个输出使用sigmoid、tanh、relu等激活函数使线性的结果非线性化。
为什么需要传递函数?
简单理解上,如果不加激活函数,无论多少层隐层,最终的结果还是原始输入的线性变化,这样一层隐层就可以达到结果,就没有多层感知器的意义了。所以每个隐层都会配一个激活函数,提供非线性变化。

BP算法
一个反馈网络,类似生物的反馈网络,和人走路不会摔倒一样,每一次输出都会有反馈去修正误差,使下一次结果更接近理想结果。
img6

以三层感知器为例做计算:
网络结构
img7

可以用到的公式为:
img8
img9

代入参数:
img10

两个输入;
隐层: b1, w1, w2, w3, w4 (都有初始值) 计算一个合理的初始值可以使用前面提到的HE初始化、随机初始化和pre-train初始化
输出层:b2, w5, w6, w7, w8(赋了初始值)
这里使用sigmoid激活函数
img11

用E来衡量误差大小,为反馈提供支持:
img12

获得E后反向计算误差:
对E求导就可计算出误差梯度
img13

计算出w5、w6、w7、w8的误差梯度:
误差梯度乘以学习率即是需要调整的误差值
img14

同理,再向上一级推导出w1-w4的误差值:
img15

完成一次反向传播:
求误差对w5的偏导过程 参数更新: 求误差对w1的偏导 注意,w1对两个输出的误差都有影响
通过以上过程可以更新所有权重,就可以再次迭代更新了,直到满足条件。

可以提供的数学函数:

@interface CC_Math : NSObject+ (double)sign:(double)input;/***  激活函数*/
+ (double)sigmoid:(double)input;
+ (double)reLU:(double)input;/***  双s曲线*/
+ (double)doubleS:(int)input;/***  标准正态分布*/
+ (double)randn:(double)input;/***  获得初始化权重*  length w个数*/
+ (NSMutableArray *)getW_positive_unitball:(int)length;
/***  weight = np.random.randn(in_node, out_node)/np.sqrt(in_node)*/
+ (NSMutableArray *)getW_XavierFiller:(int)length;
/***  Xavier论文中使用的激活函数是tanh函数,而神经网络中使用较广泛的是relu激活函数,所以提出此方法。weight = np.random.randn(in_node, out_node)/np.sqrt(in_node/2)*/
+ (NSMutableArray *)getW_MSRAFiller:(int)length;@end

可以提供的ANN函数

typedef enum : NSUInteger {ActiveFunctionTypeReLU,ActiveFunctionTypeSigmoid,//如使用sigmoid 输入输出范围在[-1,1]
} ActiveFunctionType;@interface CC_ANN : NSObject/***  训练结束后可计算结果*/
- (double)calWithInput:(NSArray *)input;//- (double)calWithInput_twolevel:(NSArray *)input;/***  一层深度学习*  samples 学习样本 多个样本以数组形式例:@[@[@[@(0.2),@(0.6)],@(0.12)],@[@[@(0.4),@(0.6)],@(0.24)]]*  weights 初始化权重 一层深度 2个输入1个输出需要权重 2^2+2=6个初始值*  learningRate 学习率 选一个较小值 如0.4*  activeFunction 激活函数*  times 训练次数*/
- (void)trainTwoToOne:(NSArray *)samples weights:(NSArray *)weights learningRate:(double)learningRate activeFunction:(ActiveFunctionType)activeFunction trainTimes:(int)times;/***  一层深度学习 自动寻找最佳学习率 自动获取初始化权值w*  activeFunction 激活函数*  times 训练次数*/
- (void)autoTrainTwoToOne:(NSArray *)samples activeFunction:(ActiveFunctionType)activeFunction trainTimes:(int)times;/***  一层深度学习 自动寻找最佳学习率 自动获取初始化权值w*  errorRate 到最小错误率前不会停止学习*/
- (void)autoTrainTwoToOne:(NSArray *)samples activeFunction:(ActiveFunctionType)activeFunction untilErrorRate:(double)errorRate;- (void)trainTwoToOne:(NSArray *)samples trainTimes:(int)times deep:(int)deep;
- (void)trainTwoToOne:(NSArray *)samples trainTimes:(int)times;@end

demo下载
https://github.com/gwh111/bench_ios

这篇关于iOS人工智能交流模型4-用CC_ANN实现DNN网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414184

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import