iOS人工智能交流模型4-用CC_ANN实现DNN网络

2023-11-23 01:00

本文主要是介绍iOS人工智能交流模型4-用CC_ANN实现DNN网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  1. 神经网络学习
  2. 常用模型分析
  3. iOS中的CoreML等闭源库
  4. 通过bench_ios中的CC_ANN使用激活函数ReLU和Sigmoid实现DNN网络。
  5. caffe、tensorflow等对比

目录:

  1. 介绍一个CC_ANN使用例子
  2. 回顾神经网络的构成
  3. 进行一次完整计算

CC_ANN是用oc封装的一层和多层神经网络例子,支持激活函数Sigmoid和ReLU

调用例子

//一次乘法的学习
//创建一个ANN网络
CC_ANN *ann=[[CC_ANN alloc]init];//学习100次
int count=100
[ann autoTrainTwoToOne:@[@[@[@(0.2),@(0.6)],@(0.12)],@[@[@(0.4),@(0.6)],@(0.24)],@[@[@(0.3),@(0.4)],@(0.12)]] activeFunction:ActiveFunctionTypeSigmoid trainTimes:count];
double predict1=[ann calWithInput:@[@(0.2),@(0.6)]];
double predict2=[ann calWithInput:@[@(0.4),@(0.6)]];
double predict3=[ann calWithInput:@[@(0.3),@(0.4)]];
double predict4=[ann calWithInput:@[@(0.4),@(0.5)]];
NSLog(@"p1=%f p2=%f p3=%f p4=%f",predict1,predict2,predict3,predict4);

//打印结果
p1=0.121306 p2=0.237448 p3=0.122096 p4=0.208426
耗时0.002秒

//学习1000次
int count=1000
//打印结果
p1=0.120000 p2=0.239999 p3=0.120001 p4=0.209638
耗时0.026秒

//学习10000次
int count=10000
//打印结果
p1=0.120000 p2=0.240000 p3=0.120000 p4=0.209638
耗时0.28秒

例子结论:

  1. 学习次数越多,对例子的还原越正确。如2*6越来越接近12
  2. 学习次数到达一定次数后,对预测的精确度不会再提高。如我们没有教过4*5,但是预测答案接近20,在学习1000次后,达到20.9638,但是学习10000次也没有将精度再次提高

这个例子符合神经网络的特征

下面看下如何构建一层神经网络,具体的计算方法。
img1

线性函数和sigmoid函数
LinearRegression模型:img2
sigmoid函数:img3

隐层决定了最终的分类效果
img4

可以看到,隐层越多,分类效果越好,因为可以转折的点更多。实际上,Kolmogorov理论指出:双隐层感知器就足以解决任何复杂的分类问题。
但是,过多的隐层和神经元结点会带来过拟合问题,不要试图降低神经网络参数量来减缓过拟合,用正则化或者dropout。

神经网络结构
img5

传递函数/激活函数
每一层传递使用wx+b,对每一个输出使用sigmoid、tanh、relu等激活函数使线性的结果非线性化。
为什么需要传递函数?
简单理解上,如果不加激活函数,无论多少层隐层,最终的结果还是原始输入的线性变化,这样一层隐层就可以达到结果,就没有多层感知器的意义了。所以每个隐层都会配一个激活函数,提供非线性变化。

BP算法
一个反馈网络,类似生物的反馈网络,和人走路不会摔倒一样,每一次输出都会有反馈去修正误差,使下一次结果更接近理想结果。
img6

以三层感知器为例做计算:
网络结构
img7

可以用到的公式为:
img8
img9

代入参数:
img10

两个输入;
隐层: b1, w1, w2, w3, w4 (都有初始值) 计算一个合理的初始值可以使用前面提到的HE初始化、随机初始化和pre-train初始化
输出层:b2, w5, w6, w7, w8(赋了初始值)
这里使用sigmoid激活函数
img11

用E来衡量误差大小,为反馈提供支持:
img12

获得E后反向计算误差:
对E求导就可计算出误差梯度
img13

计算出w5、w6、w7、w8的误差梯度:
误差梯度乘以学习率即是需要调整的误差值
img14

同理,再向上一级推导出w1-w4的误差值:
img15

完成一次反向传播:
求误差对w5的偏导过程 参数更新: 求误差对w1的偏导 注意,w1对两个输出的误差都有影响
通过以上过程可以更新所有权重,就可以再次迭代更新了,直到满足条件。

可以提供的数学函数:

@interface CC_Math : NSObject+ (double)sign:(double)input;/***  激活函数*/
+ (double)sigmoid:(double)input;
+ (double)reLU:(double)input;/***  双s曲线*/
+ (double)doubleS:(int)input;/***  标准正态分布*/
+ (double)randn:(double)input;/***  获得初始化权重*  length w个数*/
+ (NSMutableArray *)getW_positive_unitball:(int)length;
/***  weight = np.random.randn(in_node, out_node)/np.sqrt(in_node)*/
+ (NSMutableArray *)getW_XavierFiller:(int)length;
/***  Xavier论文中使用的激活函数是tanh函数,而神经网络中使用较广泛的是relu激活函数,所以提出此方法。weight = np.random.randn(in_node, out_node)/np.sqrt(in_node/2)*/
+ (NSMutableArray *)getW_MSRAFiller:(int)length;@end

可以提供的ANN函数

typedef enum : NSUInteger {ActiveFunctionTypeReLU,ActiveFunctionTypeSigmoid,//如使用sigmoid 输入输出范围在[-1,1]
} ActiveFunctionType;@interface CC_ANN : NSObject/***  训练结束后可计算结果*/
- (double)calWithInput:(NSArray *)input;//- (double)calWithInput_twolevel:(NSArray *)input;/***  一层深度学习*  samples 学习样本 多个样本以数组形式例:@[@[@[@(0.2),@(0.6)],@(0.12)],@[@[@(0.4),@(0.6)],@(0.24)]]*  weights 初始化权重 一层深度 2个输入1个输出需要权重 2^2+2=6个初始值*  learningRate 学习率 选一个较小值 如0.4*  activeFunction 激活函数*  times 训练次数*/
- (void)trainTwoToOne:(NSArray *)samples weights:(NSArray *)weights learningRate:(double)learningRate activeFunction:(ActiveFunctionType)activeFunction trainTimes:(int)times;/***  一层深度学习 自动寻找最佳学习率 自动获取初始化权值w*  activeFunction 激活函数*  times 训练次数*/
- (void)autoTrainTwoToOne:(NSArray *)samples activeFunction:(ActiveFunctionType)activeFunction trainTimes:(int)times;/***  一层深度学习 自动寻找最佳学习率 自动获取初始化权值w*  errorRate 到最小错误率前不会停止学习*/
- (void)autoTrainTwoToOne:(NSArray *)samples activeFunction:(ActiveFunctionType)activeFunction untilErrorRate:(double)errorRate;- (void)trainTwoToOne:(NSArray *)samples trainTimes:(int)times deep:(int)deep;
- (void)trainTwoToOne:(NSArray *)samples trainTimes:(int)times;@end

demo下载
https://github.com/gwh111/bench_ios

这篇关于iOS人工智能交流模型4-用CC_ANN实现DNN网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414184

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组