iOS人工智能交流模型4-用CC_ANN实现DNN网络

2023-11-23 01:00

本文主要是介绍iOS人工智能交流模型4-用CC_ANN实现DNN网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  1. 神经网络学习
  2. 常用模型分析
  3. iOS中的CoreML等闭源库
  4. 通过bench_ios中的CC_ANN使用激活函数ReLU和Sigmoid实现DNN网络。
  5. caffe、tensorflow等对比

目录:

  1. 介绍一个CC_ANN使用例子
  2. 回顾神经网络的构成
  3. 进行一次完整计算

CC_ANN是用oc封装的一层和多层神经网络例子,支持激活函数Sigmoid和ReLU

调用例子

//一次乘法的学习
//创建一个ANN网络
CC_ANN *ann=[[CC_ANN alloc]init];//学习100次
int count=100
[ann autoTrainTwoToOne:@[@[@[@(0.2),@(0.6)],@(0.12)],@[@[@(0.4),@(0.6)],@(0.24)],@[@[@(0.3),@(0.4)],@(0.12)]] activeFunction:ActiveFunctionTypeSigmoid trainTimes:count];
double predict1=[ann calWithInput:@[@(0.2),@(0.6)]];
double predict2=[ann calWithInput:@[@(0.4),@(0.6)]];
double predict3=[ann calWithInput:@[@(0.3),@(0.4)]];
double predict4=[ann calWithInput:@[@(0.4),@(0.5)]];
NSLog(@"p1=%f p2=%f p3=%f p4=%f",predict1,predict2,predict3,predict4);

//打印结果
p1=0.121306 p2=0.237448 p3=0.122096 p4=0.208426
耗时0.002秒

//学习1000次
int count=1000
//打印结果
p1=0.120000 p2=0.239999 p3=0.120001 p4=0.209638
耗时0.026秒

//学习10000次
int count=10000
//打印结果
p1=0.120000 p2=0.240000 p3=0.120000 p4=0.209638
耗时0.28秒

例子结论:

  1. 学习次数越多,对例子的还原越正确。如2*6越来越接近12
  2. 学习次数到达一定次数后,对预测的精确度不会再提高。如我们没有教过4*5,但是预测答案接近20,在学习1000次后,达到20.9638,但是学习10000次也没有将精度再次提高

这个例子符合神经网络的特征

下面看下如何构建一层神经网络,具体的计算方法。
img1

线性函数和sigmoid函数
LinearRegression模型:img2
sigmoid函数:img3

隐层决定了最终的分类效果
img4

可以看到,隐层越多,分类效果越好,因为可以转折的点更多。实际上,Kolmogorov理论指出:双隐层感知器就足以解决任何复杂的分类问题。
但是,过多的隐层和神经元结点会带来过拟合问题,不要试图降低神经网络参数量来减缓过拟合,用正则化或者dropout。

神经网络结构
img5

传递函数/激活函数
每一层传递使用wx+b,对每一个输出使用sigmoid、tanh、relu等激活函数使线性的结果非线性化。
为什么需要传递函数?
简单理解上,如果不加激活函数,无论多少层隐层,最终的结果还是原始输入的线性变化,这样一层隐层就可以达到结果,就没有多层感知器的意义了。所以每个隐层都会配一个激活函数,提供非线性变化。

BP算法
一个反馈网络,类似生物的反馈网络,和人走路不会摔倒一样,每一次输出都会有反馈去修正误差,使下一次结果更接近理想结果。
img6

以三层感知器为例做计算:
网络结构
img7

可以用到的公式为:
img8
img9

代入参数:
img10

两个输入;
隐层: b1, w1, w2, w3, w4 (都有初始值) 计算一个合理的初始值可以使用前面提到的HE初始化、随机初始化和pre-train初始化
输出层:b2, w5, w6, w7, w8(赋了初始值)
这里使用sigmoid激活函数
img11

用E来衡量误差大小,为反馈提供支持:
img12

获得E后反向计算误差:
对E求导就可计算出误差梯度
img13

计算出w5、w6、w7、w8的误差梯度:
误差梯度乘以学习率即是需要调整的误差值
img14

同理,再向上一级推导出w1-w4的误差值:
img15

完成一次反向传播:
求误差对w5的偏导过程 参数更新: 求误差对w1的偏导 注意,w1对两个输出的误差都有影响
通过以上过程可以更新所有权重,就可以再次迭代更新了,直到满足条件。

可以提供的数学函数:

@interface CC_Math : NSObject+ (double)sign:(double)input;/***  激活函数*/
+ (double)sigmoid:(double)input;
+ (double)reLU:(double)input;/***  双s曲线*/
+ (double)doubleS:(int)input;/***  标准正态分布*/
+ (double)randn:(double)input;/***  获得初始化权重*  length w个数*/
+ (NSMutableArray *)getW_positive_unitball:(int)length;
/***  weight = np.random.randn(in_node, out_node)/np.sqrt(in_node)*/
+ (NSMutableArray *)getW_XavierFiller:(int)length;
/***  Xavier论文中使用的激活函数是tanh函数,而神经网络中使用较广泛的是relu激活函数,所以提出此方法。weight = np.random.randn(in_node, out_node)/np.sqrt(in_node/2)*/
+ (NSMutableArray *)getW_MSRAFiller:(int)length;@end

可以提供的ANN函数

typedef enum : NSUInteger {ActiveFunctionTypeReLU,ActiveFunctionTypeSigmoid,//如使用sigmoid 输入输出范围在[-1,1]
} ActiveFunctionType;@interface CC_ANN : NSObject/***  训练结束后可计算结果*/
- (double)calWithInput:(NSArray *)input;//- (double)calWithInput_twolevel:(NSArray *)input;/***  一层深度学习*  samples 学习样本 多个样本以数组形式例:@[@[@[@(0.2),@(0.6)],@(0.12)],@[@[@(0.4),@(0.6)],@(0.24)]]*  weights 初始化权重 一层深度 2个输入1个输出需要权重 2^2+2=6个初始值*  learningRate 学习率 选一个较小值 如0.4*  activeFunction 激活函数*  times 训练次数*/
- (void)trainTwoToOne:(NSArray *)samples weights:(NSArray *)weights learningRate:(double)learningRate activeFunction:(ActiveFunctionType)activeFunction trainTimes:(int)times;/***  一层深度学习 自动寻找最佳学习率 自动获取初始化权值w*  activeFunction 激活函数*  times 训练次数*/
- (void)autoTrainTwoToOne:(NSArray *)samples activeFunction:(ActiveFunctionType)activeFunction trainTimes:(int)times;/***  一层深度学习 自动寻找最佳学习率 自动获取初始化权值w*  errorRate 到最小错误率前不会停止学习*/
- (void)autoTrainTwoToOne:(NSArray *)samples activeFunction:(ActiveFunctionType)activeFunction untilErrorRate:(double)errorRate;- (void)trainTwoToOne:(NSArray *)samples trainTimes:(int)times deep:(int)deep;
- (void)trainTwoToOne:(NSArray *)samples trainTimes:(int)times;@end

demo下载
https://github.com/gwh111/bench_ios

这篇关于iOS人工智能交流模型4-用CC_ANN实现DNN网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414184

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定