iOS人工智能交流模型4-用CC_ANN实现DNN网络

2023-11-23 01:00

本文主要是介绍iOS人工智能交流模型4-用CC_ANN实现DNN网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  1. 神经网络学习
  2. 常用模型分析
  3. iOS中的CoreML等闭源库
  4. 通过bench_ios中的CC_ANN使用激活函数ReLU和Sigmoid实现DNN网络。
  5. caffe、tensorflow等对比

目录:

  1. 介绍一个CC_ANN使用例子
  2. 回顾神经网络的构成
  3. 进行一次完整计算

CC_ANN是用oc封装的一层和多层神经网络例子,支持激活函数Sigmoid和ReLU

调用例子

//一次乘法的学习
//创建一个ANN网络
CC_ANN *ann=[[CC_ANN alloc]init];//学习100次
int count=100
[ann autoTrainTwoToOne:@[@[@[@(0.2),@(0.6)],@(0.12)],@[@[@(0.4),@(0.6)],@(0.24)],@[@[@(0.3),@(0.4)],@(0.12)]] activeFunction:ActiveFunctionTypeSigmoid trainTimes:count];
double predict1=[ann calWithInput:@[@(0.2),@(0.6)]];
double predict2=[ann calWithInput:@[@(0.4),@(0.6)]];
double predict3=[ann calWithInput:@[@(0.3),@(0.4)]];
double predict4=[ann calWithInput:@[@(0.4),@(0.5)]];
NSLog(@"p1=%f p2=%f p3=%f p4=%f",predict1,predict2,predict3,predict4);

//打印结果
p1=0.121306 p2=0.237448 p3=0.122096 p4=0.208426
耗时0.002秒

//学习1000次
int count=1000
//打印结果
p1=0.120000 p2=0.239999 p3=0.120001 p4=0.209638
耗时0.026秒

//学习10000次
int count=10000
//打印结果
p1=0.120000 p2=0.240000 p3=0.120000 p4=0.209638
耗时0.28秒

例子结论:

  1. 学习次数越多,对例子的还原越正确。如2*6越来越接近12
  2. 学习次数到达一定次数后,对预测的精确度不会再提高。如我们没有教过4*5,但是预测答案接近20,在学习1000次后,达到20.9638,但是学习10000次也没有将精度再次提高

这个例子符合神经网络的特征

下面看下如何构建一层神经网络,具体的计算方法。
img1

线性函数和sigmoid函数
LinearRegression模型:img2
sigmoid函数:img3

隐层决定了最终的分类效果
img4

可以看到,隐层越多,分类效果越好,因为可以转折的点更多。实际上,Kolmogorov理论指出:双隐层感知器就足以解决任何复杂的分类问题。
但是,过多的隐层和神经元结点会带来过拟合问题,不要试图降低神经网络参数量来减缓过拟合,用正则化或者dropout。

神经网络结构
img5

传递函数/激活函数
每一层传递使用wx+b,对每一个输出使用sigmoid、tanh、relu等激活函数使线性的结果非线性化。
为什么需要传递函数?
简单理解上,如果不加激活函数,无论多少层隐层,最终的结果还是原始输入的线性变化,这样一层隐层就可以达到结果,就没有多层感知器的意义了。所以每个隐层都会配一个激活函数,提供非线性变化。

BP算法
一个反馈网络,类似生物的反馈网络,和人走路不会摔倒一样,每一次输出都会有反馈去修正误差,使下一次结果更接近理想结果。
img6

以三层感知器为例做计算:
网络结构
img7

可以用到的公式为:
img8
img9

代入参数:
img10

两个输入;
隐层: b1, w1, w2, w3, w4 (都有初始值) 计算一个合理的初始值可以使用前面提到的HE初始化、随机初始化和pre-train初始化
输出层:b2, w5, w6, w7, w8(赋了初始值)
这里使用sigmoid激活函数
img11

用E来衡量误差大小,为反馈提供支持:
img12

获得E后反向计算误差:
对E求导就可计算出误差梯度
img13

计算出w5、w6、w7、w8的误差梯度:
误差梯度乘以学习率即是需要调整的误差值
img14

同理,再向上一级推导出w1-w4的误差值:
img15

完成一次反向传播:
求误差对w5的偏导过程 参数更新: 求误差对w1的偏导 注意,w1对两个输出的误差都有影响
通过以上过程可以更新所有权重,就可以再次迭代更新了,直到满足条件。

可以提供的数学函数:

@interface CC_Math : NSObject+ (double)sign:(double)input;/***  激活函数*/
+ (double)sigmoid:(double)input;
+ (double)reLU:(double)input;/***  双s曲线*/
+ (double)doubleS:(int)input;/***  标准正态分布*/
+ (double)randn:(double)input;/***  获得初始化权重*  length w个数*/
+ (NSMutableArray *)getW_positive_unitball:(int)length;
/***  weight = np.random.randn(in_node, out_node)/np.sqrt(in_node)*/
+ (NSMutableArray *)getW_XavierFiller:(int)length;
/***  Xavier论文中使用的激活函数是tanh函数,而神经网络中使用较广泛的是relu激活函数,所以提出此方法。weight = np.random.randn(in_node, out_node)/np.sqrt(in_node/2)*/
+ (NSMutableArray *)getW_MSRAFiller:(int)length;@end

可以提供的ANN函数

typedef enum : NSUInteger {ActiveFunctionTypeReLU,ActiveFunctionTypeSigmoid,//如使用sigmoid 输入输出范围在[-1,1]
} ActiveFunctionType;@interface CC_ANN : NSObject/***  训练结束后可计算结果*/
- (double)calWithInput:(NSArray *)input;//- (double)calWithInput_twolevel:(NSArray *)input;/***  一层深度学习*  samples 学习样本 多个样本以数组形式例:@[@[@[@(0.2),@(0.6)],@(0.12)],@[@[@(0.4),@(0.6)],@(0.24)]]*  weights 初始化权重 一层深度 2个输入1个输出需要权重 2^2+2=6个初始值*  learningRate 学习率 选一个较小值 如0.4*  activeFunction 激活函数*  times 训练次数*/
- (void)trainTwoToOne:(NSArray *)samples weights:(NSArray *)weights learningRate:(double)learningRate activeFunction:(ActiveFunctionType)activeFunction trainTimes:(int)times;/***  一层深度学习 自动寻找最佳学习率 自动获取初始化权值w*  activeFunction 激活函数*  times 训练次数*/
- (void)autoTrainTwoToOne:(NSArray *)samples activeFunction:(ActiveFunctionType)activeFunction trainTimes:(int)times;/***  一层深度学习 自动寻找最佳学习率 自动获取初始化权值w*  errorRate 到最小错误率前不会停止学习*/
- (void)autoTrainTwoToOne:(NSArray *)samples activeFunction:(ActiveFunctionType)activeFunction untilErrorRate:(double)errorRate;- (void)trainTwoToOne:(NSArray *)samples trainTimes:(int)times deep:(int)deep;
- (void)trainTwoToOne:(NSArray *)samples trainTimes:(int)times;@end

demo下载
https://github.com/gwh111/bench_ios

这篇关于iOS人工智能交流模型4-用CC_ANN实现DNN网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414184

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja