程序员指南|学会与大模型相处,提升个人开发效率

2023-11-22 19:52

本文主要是介绍程序员指南|学会与大模型相处,提升个人开发效率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

过去一年,通过各种平台我们可以轻而易举的接收到人们关于使用大模型遇到诸多问题的声音。然而,显而易见的是,大模型可以在许多方面提高我们的效率,尤其是在处理文档、测试用例和代码等繁琐事务方面。


大模型的优势和短板是什么?


首先,我们需要了解大模型的概念。由于训练数据和参数等多种原因,不同的模型有各自的优势。在一些微信机器人中,我们会使用文心一言来获取实时的信息内容,并结合国内外的开源和闭源模型(如ChatGPT等)进行不断优化。而在撰写英文文档和邮件等内容时,则会优先考虑国外的模型。
其次,我们要知道大模型不擅长什么。大模型擅长的是生成文本。究其本质它又是一个概率模型,所以它需要借助其他工具来完成自身不擅长的内容(比如数学计算)。因此,我们不应该期望大模型能够帮助我们完成一些数学计算,而是应该期望它能根据我们的上下文,生成数学计算的公式、代码等等。


提高个人效率的关键之一是学会与大模型进行有效的交流


大模型的交流方式主要通过Prompt进行,而构建一个Prompt是需要持续迭代的过程。在这个过程中,我们需要不断尝试,以找到最适合自己的模式。因此网上也先后出现了很多针对Prompt的教程,甚至因此衍生出了新的赚钱之道。常见的模式是:
1、确定角色和任务。比如明确扮演一个中级开发工程师以及需要完成哪些任务。
2、背景。提供一些必要的上下文,以便于有概率地、更好地匹配到答案。
3、列出你对其的一些具体要求,比如返回的格式和内容等。
4、最后的import将根据用户选择的是类还是方法来确定。

精炼上下文成本,活用各类工具


Prompt模板,绝对属于人们口中的“一看就会,一用就废”的存在,同一个需求可能真的会获得千人千面的答案。因此,很多人在使用AIGC工具时最大的问题是编写Prompt往往需要花费超过任务完成时间的时间。
也因此,从某种程度上来说,我们所需要的上下文并不一定要准确,但一定要精炼,以节省自己的时间。所以,从时间成本上来说,我们要考虑引入工具,或者构建适合自己的工具来完善这个过程。
对于开发人员来说,目前市面上流行的工具有:GitHubCopilot、ChatGPT等其他内容生成工具。诸如GitHubCopilot在生成效果上之所以好,是因为它会根据当前的代码文件、编辑历史,分析出一些相似的上下文,再交由大模型处理。整个过程是全自动的,所以它能大量节省时间。但是鉴于每月可能产生10到30美元的成本,需要认真探讨更合适的方案。
基于此,来自中国的飞算SoFlu软件机器人,推出专注Java生成AI函数的FuncGPT(慧函数)。通过自然语言描述Java函数需求,不需要繁复的上下文,输入需求、出参、入参,即可实时生成高质量、高可读性、拿来即用的Java函数代码。生成代码可直接复制到IDEA,或一键导入Java全自动开发工具函数库,满足程序员不同的使用场景。最重要的是它是免费的。


个人成长:增强人工智能不擅长的技能。
随着AIGC成本的进一步降低,可能会有一些部门因为生成式AI而被公司缩减规模。这并不是因为AIGC可以取代人类,而是因为人们预期可以提高20~30%的效率,并且在一些团队试验后也发现确实如此。
假设AIGC能够增加一个团队的效率20%,那么从管理层的角度来看,他们会考虑减少团队成员的20%。而更有趣的是,如果团队规模减少了20%,由于沟通成本的降低,效率提升会更为显著。因此,该团队的效能提升超过了20%。
就短期而言,那些掌握了AIGC能力的开发人员不会因此被淘汰。但从长远来看,开发行业的内卷现象将会加剧。十多年前,只需懂一些Java的人就可以了,但如今的标准则是既要精通Java设计模式,又要熟练掌握各种Java算法。因此,从个人职业发展的角度,我们需要适当地提升在人工智能领域不擅长的其他技能。
就能力而言,AI不擅长解决复杂上下文的问题,比如架构设计、软件建模等等。从另一个层面上,由于AI作为一个知识库,它能够帮助我们解决一些软件开发的基础问题(比如某语言的语法),会使得我们更易于上手新语言,从而进一步促使开发者变成多面手,成为多语言的开发者。
相对于提升这些能力而言,在短时间内,我们更应该加入发展大模型的大军。因为这是一个全新的领域,不需要传统人工智能算法的各种知识,只需要懂得如何将其应用在工程上。

关注公众号【飞算科技】,获取更多行业及产品信息。

这篇关于程序员指南|学会与大模型相处,提升个人开发效率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412527

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}