DAX教程:篮子分析2.0

2023-11-22 09:30
文章标签 分析 教程 2.0 dax 篮子

本文主要是介绍DAX教程:篮子分析2.0,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者|Davis Zhang 编译|VK 来源|Towards Data Science

本文旨在利用DAX分析Power-BI中的客户购买行为,并深入了解产品潜力。

几年前,Marco Russo和Alberto Ferrari发表了一篇名为“篮子分析”的博客

https://www.daxpatterns.com/basket-analysis/

这篇有趣的文章详细描述了如何使用DAX计算任何产品组合下的订单数量和客户数量等非常有用的指标。本文可以看作是“篮子分析”的一个扩展,它考虑了顾客购买不同产品的时间顺序。

与原始的“篮子分析”相比

假设A和B代表两种不同的产品,那么“篮子分析”计算P(AB),而本文计算P(A|B)和P(B|A)。你可以比较下面的两个数字:

上图是“篮子分析”中“两种产品都有顾客”的衡量标准,显示72位顾客同时拥有“瓶笼”和“自行车架”的购买记录。

但是,下图中显示的数据考虑了客户购买产品的时间顺序。你可以发现,先购买自行车架后购买瓶、笼的客户有8家,先购买瓶、笼后购买自行车架的客户有14家(注:暂时不考虑同时购买A、B的情况)

为什么这个分析有意义

客户的订单记录反映了一些非常有用的事实,为产品之间的相关性提供了方向。换言之,“购物篮分析”在分析超市数据时非常有用,因为顾客通常在购物时选择多种产品,然后到收银台一起下订单。

在这种情况下,所有产品都被视为同时订购。但事实上,在超市购物过程中,顾客选择的不同产品的记录是无法追踪的。

但如果是在其他情况下,比如客户在电子商务平台或官网上下单,如果你是店长,你可能想知道A和B是最畅销的车型,哪一款可以带来更多的回头客,哪一款更容易流失客户。

因此,我们需要知道每种产品的回购百分比。例如,所有先购买产品A的顾客,未来会有多少人再回来购买产品,进一步分析,在这些人中,购买的仍然是产品A或其他产品?各占多少比例,这是一个值得研究的问题。

计算过程

经过计算过程,我们最终将得到如下图所示的计算结果(注:我使用与“篮子分析”相同的数据集):

如前所述,它显示了哪些客户先购买了产品A并有后续的购买记录,他们中有多少人购买了产品B或产品C等。

因此,为了达到这个计算结果,这里有五个步骤:

1.首先,对销售表中的所有订单进行分类,在客户的所有订单中,一个或多个订单日期最早的订单被分类为第一个订单,其余的为“非第一”:

IsFirstOrder = 
VAR
E_Date = 'Sales'[OrderDateKey]
VAR
CUST = 'Sales'[CustomerKey]
RETURN
IF(SUMX(FILTER('Sales',CUST = 'Sales'[CustomerKey]&&E_Date > 'Sales'[OrderDateKey]),COUNTROWS('Sales'))>0,FALSE,TRUE)

2.过滤销售中所有产品A的订单数据,然后进一步过滤哪些订单被标记为客户的第一个订单。我们在此过滤表中提取客户列表,并向其添加一个名为“ROWS”的虚拟列,得到虚拟表VT1。

3.使用Sales作为主表,并使用NATURALLEFTOUTERJOIN()与虚拟表“VT1”关联,然后使用filter()排除[ROWS]值不等于1的行,其余数据(VT2)是“VT1”返回的所有客户的所有订单。最后,对除“一阶”外的所有订单进一步过滤数据,结果命名为“CustDistinctValue”:

CustDistinctValue = 
VAR
FIRSTORDERPROD = 
IF(HASONEVALUE('Product'[Subcategory]),VALUES('Product'[Subcategory]),0)
VAR
VT1 = 
SUMMARIZE(FILTER(Sales,AND(related('Product'[Subcategory]) = FIRSTORDERPROD,'Sales'[IsFirstOrder]=TRUE)),'Sales'[CustomerKey],"ROWS",DISTINCTCOUNT(Sales[CustomerKey]))
VAR
VT2 = 
FILTER(NATURALLEFTOUTERJOIN(ALL(Sales),VT1),[ROWS] = 1)
RETURN
CALCULATE(DISTINCTCOUNT('Sales'[CustomerKey]),FILTER(VT2,'Sales'[IsFirstOrder] = FALSE)
)

4.之后,我们需要确保这些数据可以按产品进行过滤(在这种情况下,我们只使用子类别)。这里与宏的计算方法基本相同,使用产品表(Filter product)和主表的副本建立非活动关系,然后创建一个度量值,以便其上下文忽略产品表的所有字段,并从其副本(Filter product)接受上下文。

CustPurchaseOthersSubcategoryAfter = 
VAR CustPurchaseOthersSubcategoryAfter = 
CALCULATE ('Sales'[CustDistinctValue],CALCULATETABLE (SUMMARIZE ( Sales, Sales[CustomerKey] ),'Sales'[IsFirstOrder] = FALSE,ALLSELECTED ('Product'),USERELATIONSHIP ( Sales[ProductCode],'Filter Product'[Filter ProductCode] ))
)
RETURN
IF(NOT([SameSubCategorySelection]),CustPurchaseOthersSubcategoryAfter)

注:“SameSubCategorySelection”用于排除选择相同子类别的数据。此公式还使用宏的方法来完成:

SameSubCategorySelection = 
IF (HASONEVALUE ( 'Product'[Subcategory] )&& HASONEVALUE ( 'Filter Product'[Filter Subcategory] ),IF (VALUES ( 'Product'[Subcategory])= VALUES ( 'Filter Product'[Filter Subcategory] ),TRUE)
)

5.现在,我们已经计算出购买产品A的客户中有多少人首先购买了其他产品,现在我们需要计算出这些客户占购买产品A的客户总数的比例,然后才有购买记录。以下是计算该比例分母的代码。

AsFirstOrderCust = 
VAR
FIRSTORDERPROD = 
IF(HASONEVALUE('Product'[Subcategory]),VALUES('Product'[Subcategory]),0)
VAR
VT1 = 
SUMMARIZE(FILTER(Sales,AND(RELATED('Product'[Subcategory]) = FIRSTORDERPROD,'Sales'[IsFirstOrder]=TRUE)),'Sales'[CustomerKey]
)
return
CALCULATE(DISTINCTCOUNT('Sales'[CustomerKey]),VT1)
-------------------------------------------------------------------------------
IsLastOrder = 
VAR
E_Date = 'Sales'[OrderDateKey]
VAR
CUST = 'Sales'[CustomerKey]
RETURN
IF(SUMX(FILTER('Sales',CUST = 'Sales'[CustomerKey]&&E_Date < 'Sales'[OrderDateKey]),COUNTROWS('Sales'))>0,"F","T")
-------------------------------------------------------------------------------
AsFirstOrderCustRepurchase = 
CALCULATE('Sales'[AsFirstOrderCust],'Sales'[IsLastOrder] = "F")

现在我们得到了最终的结果:CustPurchaseOthersSubCategoryAfter %,这个度量的名称很长,因为它的逻辑很复杂,就像上面的计算过程一样。

CustPurchaseOthersSubCategoryAfter % = 
DIVIDE ( 'Sales'[CustPurchaseOthersSubcategoryAfter],'Sales'[AsFirstOrderCustRepurchase])

最终结果

最后,我们将成功获得如下的最终结果,并选择使用名为“CHORD”的自定义视觉效果将其可视化。

如你所见,首先购买公路自行车的顾客中,1853人后来购买了山地自行车,而有趣的是,只有200名顾客在购买了山地自行车之后购买了公路自行车。

附上了PBIX文件,如果你有兴趣的话可以在这里下载。

https://1drv.ms/u/s!AjpQa2fseaxaoDLeh4yBlBSaa-qx

原文链接:https://towardsdatascience.com/explore-the-potential-of-products-through-customers-purchase-behaviour-in-power-bi-basket-a1f77e8a2bf6

欢迎关注磐创AI博客站: http://panchuang.net/

sklearn机器学习中文官方文档: http://sklearn123.com/

欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/

这篇关于DAX教程:篮子分析2.0的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/409165

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用