两种Deformable Attention的区别

2023-11-22 05:01

本文主要是介绍两种Deformable Attention的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先分别写一下流程

Deformable DETR(2020)的Deformable Attention

请添加图片描述
解释:
Deformable Attention如下图所示K=3, M=3K是指每个zq会和K个offset算attention,M是指M个head, z q z_q zq有N=HW个:

参考点:reference points,各个特征层上的点,(0.5,0.5)x 4,(0.5,1.5)x 4,…(H-0.5,W-0.5)x 4 ,再除以H或W进行归一化;
偏移量:offsets,网络自己学习的偏移量;
采样点:reference points + offsets,每个特征点都会学习得到4个采样点,然后只计算这个特征点和这四个采样点的相似度即可,不需要学习和所有特征点的相似度;
reference point确定方法为用了torch.meshgrid方法,调用函数(get_reference_points)。 对于每一层feature map初始化每个参考点中心横纵坐标,加减0.5是确保每个初始点是在每个pixel的中心,例如[0.5,1.5,2.5, …]
在Decoder中,参考点的获取方法为object queries通过一个nn.Linear得到每个对应的reference point。
初始的采样点位置相当于会分布在参考点3x3、5x5、7x7、9x9方形邻域

  • Z Z Z :输入特征 ,[HW,C]
  • z q z_q zq :query ,N个[1,C]
  • p q p_q pq :参考点Reference Point,就是zq在特征图x上的坐标,是2d向量( P q x , P q y Pqx,Pqy PqxPqy(0和1之间)
  • ▲ P m q k ▲Pmqk Pmqk :offsets,由每个 query z q z_q zq经过一个Linear得到,每个head会生成K个offset,一共M个head,即,在每个head中采样K个位置
  • W ′ m x W'm_x Wmx :Transformation Matrix,就是过一个Linear
  • (query z q z_q zq送进通道数为3MK的Linear,前2MK个通道编码 ▲ P m q k ▲Pmqk Pmqk,剩下的MK过softmax得到对应的 A m q k Amqk Amqk
  • Values : p q p_q pq+ ▲ P m q k ▲Pmqk Pmqk获取在特征图上的值,通常是小数,因此从特征图上索引特征时采用双线性插值的方式,之后乘上 W ′ m x W'm_x Wmx
  • A m q k Amqk Amqk :Attention Weights,也一样,直接由query
  • z q z_q zq经过linear和softmax得到,也是每个head生成K个Attention weight,和(因此,在DeformableDETR的Deformable Attention里,没有真的key query乘积计算,更像DCN)

DAT(2022)的的Deformable Attention

请添加图片描述
文章可视化画的是针对最重要的key,我现在见过对attention map,query做可视化的,想怎么解释就怎么解释

流程:

  1. 特征图 x x x [H,W,C]
  2. 根据feature map生成参考点reference point,这里不是网格中心而是网格的交接点(整){(0, 0), . . . , (HG − 1, WG − 1)}
  3. 将reference point norm到(-1,1)之间,坐标(-1,-1)代表左上角,坐标(1,1)代表右下角
  4. Δ P ΔP ΔP由以query为输入的offset Network得到,并将得到的 Δ P ΔP ΔP与reference points的坐标相加,从而得到偏移后位置信息。 Δ P ΔP ΔP幅度受超参数s控制防止过大。
  5. 对变形后的reference points使用双线性插值方法进行采样从而得到x:sampled features
  6. 过两个线性层分别得到v和k
  7. bias offset:我们计算归一化范围[−1,+1]中的相对位移,然后通过连续相对位移在参数化偏置表ˆB∈R(2H−1)×(2W−1)中插值φ(ˆB;R),以覆盖所有可能的偏移值。
    8.多头输出:在这里插入图片描述

总的来说在小地方进行了修改,offset network这么设计只说了要和transformer保持相同大小的感受野,但至少证明了deformable attention 是通用的。

为什么DAT要在stage3 stage4才使用deformable attention?

因为stage1 和 stage2 基本上是在提取局部信息,deformable attention 效果不如swin attention。而且前两个stage中,key和value对太多了,会大大增大因为点积和双线性插值带来的计算复杂度。
在这里插入图片描述

这篇关于两种Deformable Attention的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407705

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

C# Semaphore与SemaphoreSlim区别小结

《C#Semaphore与SemaphoreSlim区别小结》本文主要介绍了C#Semaphore与SemaphoreSlim区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、核心区别概览二、详细对比说明1.跨进程支持2.异步支持(关键区别!)3.性能差异4.API 差

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

Java中自旋锁与CAS机制的深层关系与区别

《Java中自旋锁与CAS机制的深层关系与区别》CAS算法即比较并替换,是一种实现并发编程时常用到的算法,Java并发包中的很多类都使用了CAS算法,:本文主要介绍Java中自旋锁与CAS机制深层... 目录1. 引言2. 比较并交换 (Compare-and-Swap, CAS) 核心原理2.1 CAS

MySQL集群高可用架构的两种使用小结

《MySQL集群高可用架构的两种使用小结》本文介绍了MySQL的两种高可用解决方案:组复制(MGR)和MasterHighAvailability(MHA),文中通过示例代码介绍的非常详细,对大家的学... 目录一、mysql高可用之组复制(MGR)1.1 组复制核心特性与优势1.2 组复制架构原理1.3

MySQL中VARCHAR和TEXT的区别小结

《MySQL中VARCHAR和TEXT的区别小结》MySQL中VARCHAR和TEXT用于存储字符串,VARCHAR可变长度存储在行内,适合短文本;TEXT存储在溢出页,适合大文本,下面就来具体的了解... 目录一、VARCHAR 和 TEXT 基本介绍1. VARCHAR2. TEXT二、VARCHAR

Java8 Collectors.toMap() 的两种用法

《Java8Collectors.toMap()的两种用法》Collectors.toMap():JDK8中提供,用于将Stream流转换为Map,本文给大家介绍Java8Collector... 目录一、简单介绍用法1:根据某一属性,对对象的实例或属性做映射用法2:根据某一属性,对对象集合进行去重二、Du

python中getsizeof和asizeof的区别小结

《python中getsizeof和asizeof的区别小结》本文详细的介绍了getsizeof和asizeof的区别,这两个函数都用于获取对象的内存占用大小,它们来自不同的库,下面就来详细的介绍一下... 目录sys.getsizeof (python 内置)pympler.asizeof.asizeof

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下