Movidius的深度学习入门

2023-11-22 03:30
文章标签 学习 入门 深度 movidius

本文主要是介绍Movidius的深度学习入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.Ubuntu虚拟机上安装NC SDK

   cd /home/shine/Downloads/mkdir NC_SDKgit clone https://github.com/movidius/ncsdk.gitmake install

   通过运行测试例程判断是否正确安装

   make examples

 2.激活USB设备

  在启动ubuntu前,请不要插入movidius,等ubuntu启动以后,再插入(知乎用户经验,笔者测试不影响)

3.测试工程

   cd /home/shine/Downloads/NC_SDK/ncsdk/examples/apps/hello_ncs_cpp/make runcd /home/shine/Downloads/NC_SDK/ncsdk/examples/apps/hello_ncs_py/make run

  正常结果显示

   Hello NCS! Device opened normally.Goodbye NCS!  Device Closed normally.NCS device working.

 4.训练工程

  ncappzoo中提供了大量的工程样例提供分析,为开发者的模型选择提供了极大的便利,在选择模型的时候需要综合权衡训练样本的类型、大小以及部署后的运行速度。

   cd /home/shine/Downloads/NC_SDK/ncsdk/git clone https://github.com/ashwinvijayakumar/ncappzoogit checkout dogsvscats 

   以猫和狗的分类任务为例

  • 数据集的准备(在百度网盘中共享测试数据集和训练数据集)

    https://pan.baidu.com/s/1mtXYfB61Czkadjrgs4RXzw

    https://pan.baidu.com/s/1ZD4Hocgk4bMcl8tQGkTHcQ

   cd ncappzoo/apps/dogsvscatsmkdir datamv /home/shine/Downloads/test1.zip ~/Downloads/ncappzoo/apps/dogsvscats/data/mv /home/shine/Downloads/train.zip ~/Downloads/ncappzoo/apps/dogsvscats/data/cd ncappzoo/apps/dogsvscatsmake 

   上述操作主要执行

   Image pre-processing - resizing , cropping , histogram equalization (图像预处理)Shuffling the images  (图像打乱)Splitting the images into training and validation (图像分割为训练集和测试集)Creating an lmdb database of these images (格式转换)Computing image mean -a common deep learning technique used to normalize data (计算图像均值)  
  • 模型对比

  ①比较模型的差异

   export CAFFE_PATH=~/Downloads/caffe-masterdiff -u $CAFFE_PATH/models/bvlc_googlenet bvlc_googlenet/org  
  • 数据训练

  ①下载caffe预训练模型,使用本地CPU或GPU进行训练,CAFFE_PATH需要替换为本地安装目录

   $CAFFE_PATH/scripts/download_model_binary.py $CAFFE_PATH/models/bvlc_googlenet$CAFFE_PATH/build/tools/caffe train --solver bvlc_googlenet/org/solver.prototxt --weights $CAFFE_PATH/models/bvlc_googlenet/bvlc_googlenet.caffemodel 2>&1 | tee bvlc_googlenet/org/train.log  

 

    #错误1:Cannot use GPU in CPU-only Caffe: check modecd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/orgvim solver.prototxt将其中的 solver_mode: GPU改为 solver_mode: CPU 或者将caffe重新编译成GPU模式#错误2:Check failed: error == cudaSuccess (2 vs. 0) out of memory由于博主使用的是GTX 650Ti 显存只有979Mb,执行GPU运算的时候出现显存不足的现象 

   ②使用Intel AI Cloud 加速训练

    如上文所述,在本地训练数据是一个巨大的运算量,常常需要几周或几个月,因此使用Intel提供的云服务器可以极大缩短训练的时间

    在terminal中使用如下语句登陆到AI Cloud 服务器

    ssh colfaxmkdir dogsvscats   

   登陆成功后即显示

    ######################################################################### Welcome to Intel AI DevCloud!             ######################################################################## 

   将训练dogsvscats工程所需的数据集及shell命令上传到服务器(请根据实际目录进行调整,若上传速度较慢请尝试云服务器wget直接下载开放数据集)

   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/data/train.zip colfax:/home/u14673/ncappzoo/apps/dogsvscats/data/scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/data/test1.zip .zip colfax:/home/u14673/ncappzoo/apps/dogsvscats/data/ 

   将对应的shell文件和Makefile上传到服务器用于训练数据预处理(请根据实际目录进行调整)

   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/Makefile colfax:/home/u14673/ncappzoo/apps/dogsvscats/scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/create-labels.py colfax:/home/u14673/ncappzoo/apps/dogsvscats/scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/create-lmdb.sh colfax:/home/u14673/ncappzoo/apps/dogsvscats/ 

   使用Makefile进行预处理,由于Makefile中deps含有sudo apt-get -y install unzip和sudo pip install pyyaml,且sudo apt-get在AI Cloud中无法运行

   vi Makefile 

   将deps更改为

     @echo "Installing dependencies..."#      sudo apt-get -y install unzip#      sudo pip install pyyaml 

   :wq!保存后退出,创建任务用于数据预处理

   vi data_process.sh 

   在打开的界面中输入(请根据实际目录进行调整)

    echo "Start Data Process"cd /home/u14673/ncappzoo/apps/dogsvscats/make allecho "Data Process Finished"  

   :wq!保存后退出,提交任务开始数据预处理

    qsub data_process.sh 

    使用qstat可以查看任务完成的情况,完成后会在当前目录中生成对应的日志文件 

   将训练所需的prototxt及预训练模型上传至AI Cloud

   scp -r /home/shine/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet colfax:/home/u14673/ncappzoo/apps/dogsvscats/scp /home/shine/Downloads/caffe/models/bvlc_googlenet/bvlc_googlenet.caffemodel colfax:/home/u14673/ncappzoo/apps/dogsvscats/ 

    创建任务用于数据训练

   vi data_train.sh  

     在打开的界面中输入如下语句(请根据实际目录进行调整)      

   cd /home/u14673/ncappzoo/apps/dogsvscats/echo 'Start Trainning'
   # >&表示所有的标准输出和标准错误输出都将被重定向
/glob/intel-python/python3/bin/caffe train --solver bvlc_googlenet/org/solver.prototxt --weights /home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet.caffemodel 2>&1 | tee bvlc_googlenet/org/train.log    

   关于caffe train命令的定义,标准的范例如下

     caffe train \--solver=solver_1st.prototxt \--weights=VGG/VGG_ILSVRC_16_layers.caffemodel \--gpu=0,1,2,3  2>&1 | tee log_1st.txt

   其中--solver为必要的参数,配置solver文件
   如果从头开始训练模型,则无需配置--weights
   如果从快照中恢复,则需要配置--snapshot
   如果是fine-tuning,则需要配置
--weights

   :wq!保存后退出,提交任务开始训练,训练完成后在当前目录可以看到日志文件

   qsub data_train.sh   

   查看日志,日志保存在 bvlc_googlenet/org 目录,使用如下命令将数据拷贝到本地

   scp colfax:/home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/train.log ./   

   使用caffe自带的工具绘制(位于caffe/tools/extra目录)训练数据,caffe中支持很多种曲线绘制,通过指定不同的类型参数即可,具体参数如下

  Notes:  1. Supporting multiple logs.  2. Log file name must end with the lower-cased ".log".  Supported chart types:  0: Test accuracy  vs. Iters  1: Test accuracy  vs. Seconds  2: Test loss  vs. Iters  3: Test loss  vs. Seconds  4: Train learning rate  vs. Iters  5: Train learning rate  vs. Seconds  6: Train loss  vs. Iters  7: Train loss  vs. Seconds  

   解析日志并生成Test accuracy  vs. Seconds曲线(实际应该为Test Loss,参考https://www.cnblogs.com/WaitingForU/p/9130327.html的解析)

    cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org    cp -r /home/shine/Downloads/caffe/tools/extra ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/orgmv train.log ./extra/./plot_training_log.py.example 0 save.png ./train.log

     

                   Test Loss Vs Seconds 

    

                    Train Loss Vs Seconds

   从上述两张图来看,似乎训练过程并未收敛,对于这一问题,原作者并未给出原因,而是建议去掉--weights重新进行训练   

  /glob/intel-python/python3/bin/caffe train --solver bvlc_googlenet/org/solver.prototxt 2>&1 | tee bvlc_googlenet/org/train_withoutweights.log

   

                      Test Loss Vs Iters

   

                    Test Accuracy Vs Iters

    将训练后的模型拷贝到本地

  scp colfax:/home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/bvlc_googlenet_iter_40000.caffemodel /home/shine/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/
  cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/

   本地机器(需要安装NCSDK)查看网络分析,大致可以得到如下的图形,显示了各层连接的带宽和运行时间

  mvNCProfile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodelfirefox output_report.html

   

 

  • 模型调优

   作者对比了dogsvscats例程中改进的网络和GoogLenet原始网络,通过Caffe自带的Python工具分别绘制对应网络拓扑

  cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/orgpython ~/Downloads/caffe/python/draw_net.py train_val.prototxt train_val_plot.png
  eog train_val_plot.png
cd
~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/custompython ~/Downloads/caffe/python/draw_net.py train_val.prototxt train_val_plot.png
  eog train_val_plot.png

   使用python-caffe自带的工具draw_net.py时可能会遇到如下错误

  #错误1 ImportError: No module named google.protobuf (没有安装python-protobuf) 
      sudo apt-get install python-protobuf

  #错误2 ImportError: No module named _caffe (caffe源码编译的时候没有编译pycaffe)
      cd ~/Downloads/caffe/
      sudo make pycaffe

  #错误3 ImportError: No module named skimage.io (没有安装python-skimage) 
      sudo apt-get install python-skimage

  #错误4 ImportError: No module named pydot (没有安装python-pydot)
      sudo apt install python-pydot python-pydot-ng graphviz
  • 模型部署

根据最新训练的结果,生成graph文件

  cd ~/workspace/ncappzoo/apps/dogsvscats/bvlc_googlenet/org (由于前面训练过程未能收敛,使用该模型预测时会出现Nan的结果)mvNCCompile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodel -o dogsvscats-org.graph
  cd ~/workspace/ncappzoo/apps/dogsvscats/bvlc_googlenet/custom (定制优化后的网络)
  mvNCCompile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodel -o dogsvscats-org.graph
  • 模型测试

  修改ncappzoo/apps/image-classifier.py,原文件如下

  # User modifiable input parametersNCAPPZOO_PATH           = '../..'GRAPH_PATH              = NCAPPZOO_PATH + '/caffe/GoogLeNet/graph'IMAGE_PATH              = NCAPPZOO_PATH + '/data/images/cat.jpg'CATEGORIES_PATH         = NCAPPZOO_PATH + '/data/ilsvrc12/synset_words.txt'IMAGE_MEAN              = numpy.float16( [104.00698793, 116.66876762, 122.67891434] )IMAGE_STDDEV            = ( 1 )IMAGE_DIM               = ( 224, 224 )

  修改后的文件如下

  NCAPPZOO_PATH           = '../..'GRAPH_PATH              = NCAPPZOO_PATH +'/apps/dogsvscats/bvlc_googlenet/custom/dogsvscats-org.graph'IMAGE_PATH              = NCAPPZOO_PATH +'/apps/dogsvscats/data/test1/173.jpg'CATEGORIES_PATH         = NCAPPZOO_PATH +'/apps/dogsvscats/data/categories.txt'IMAGE_MEAN              = numpy.float16( [106.202, 115.912, 124.449] )IMAGE_STDDEV            = ( 1 )IMAGE_DIM               = ( 224, 224 )

  使用生成的graph测试准确率(注意是python3,使用python image-classifier.py时会报错,具体原因待查明)

  cd ~/Downloads/ncappzoo/apps/image-classifierpython3 image-classifier.py

  得到结果如下

  ------- predictions --------Prediction for : dog with 100.0% confidence in 89.67 msPrediction for : cat with 0.0% confidence in 89.67 ms

  那么关于本步骤部署,系统具体作了哪些事情呢,深入查看image-classifier.py我们可以得知

  # ---- Step 1: Open the enumerated device and get a handle to it -------------#  枚举Movidius神经元计算棒# ---- Step 2: Load a graph file onto the NCS device -------------------------#  加载graph文件# ---- Step 3: Offload image onto the NCS to run inference -------------------#  加载image文件# ---- Step 4: Read & print inference results from the NCS -------------------#  读取并打印运算结果# ---- Step 5: Unload the graph and close the device -------------------------#  关闭神经元计算棒
  • 模型调优  

 

 

 

  • 参考文献:

   1.https://movidius.github.io/blog/deploying-custom-caffe-models

   2.https://communities.intel.com/community/tech/intel-ai-academy

   3.https://www.kaggle.com/khorchanov/dogsvscats

转载于:https://www.cnblogs.com/WaitingForU/p/9043737.html

这篇关于Movidius的深度学习入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407178

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多