2023年亚太杯数学建模思路 - 案例:最短时间生产计划安排

2023-11-22 02:28

本文主要是介绍2023年亚太杯数学建模思路 - 案例:最短时间生产计划安排,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0 赛题思路
  • 1 模型描述
  • 2 实例
    • 2.1 问题描述
    • 2.2 数学模型
      • 2.2.1 模型流程
          • 2.2.2 符号约定
          • 2.2.3 求解模型
    • 2.3 相关代码
    • 2.4 模型求解结果
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

最短时间生产计划模型

该模型出现在好几个竞赛赛题上,预测2023今年国赛也会与该模型相关。

1 模型描述

离散系统仿真在工业生产的工序安排中起到了相当重要的作用,如何就一些内部机制复杂的离散问题建立简单易行、可监测性强的数学模型一直是仿真技术的研究热点.

离散事件系统现有三种仿真建模策略,即:

  • 事件调度法
  • 活动扫描法
  • 进程交互法.

该模型demo学长采用了其中的活动扫描法对生产中的一个实际例子进行了处理.

活动扫描法对于各事件之间相关性很强的系统有着很好的适用性.

2 实例

2.1 问题描述

在许多工厂生产过程中,由于设备的数量、产品加工的次序限制,往往不能简单地安排生产任务.我们设想,应用强大的数学软件配合简单易行的方法进行安排.

设某重型机械厂产品都是单件性的,其中有一车间共有4种不同设备,现接受6件产品的加工任务,每件产品接受的程序在指定的设备上加工,其工序与加工周期如下表

在这里插入图片描述
现在我们根据这一实际问题,寻求安排的方法.

要求:

1、每件产品必须按规定的工序加工,不得颠倒.

2、每台设备在同一时间只能担任一项任务(每件产品的每个工序为一个任务).

3、在尽可能短的时间里,完成所接受的全部任务.

为了节省电能,合理分配生产任务,厂方还要求:

1、做出每件产品的每个工序开工、完工时间表.

2、给出每台设备承担任务的时间表.

2.2 数学模型

2.2.1 模型流程

在这里插入图片描述

2.2.2 符号约定

在这里插入图片描述

2.2.3 求解模型

在这里插入图片描述在这里插入图片描述在这里插入图片描述

2.3 相关代码

clear
clc
seq=[3 1 2 3 4 0 0 0                     %各产品加工时所用的设备的次序1 4 2 3 0 0 0 03 4 1 2 1 0 0 02 3 4 1 4 3 0 04 2 3 4 1 3 4 01 2 1 3 4 1 3 1];tim=[8 2 4 24 6 0 0 0                   %加工对应使用的时间4 5 3 4 0 0 0 03 7 15 20 8 0 0 07 6 21 1 16 3 0 010 4 8 4 12 6 1 01 4 7 3 5 2 5 8];
whole=[0 0 0 0];
for i=1:6for j=1:8if(seq(i,j)~=0)whole(seq(i,j))=whole(seq(i,j))+tim(i,j);endend
end
whole                          %生产各件产品所需的总时间mes=cell(4,1);                   %记录各个设备的工作时间(对应于上面tim的位置)
for k=1:4mes{k,1}=zeros(6,8);for j=1:8for i=1:6if(seq(i,j)==k)mes{k,1}(i,j)=tim(i,j);elsemes{k,1}(i,j)=100;endendend
endturn=cell(5,100);               %记录四个设备的开关时间及加工对象(on(i)for i=1:4for j=1:100turn{i,j}='off';end
end
for i=1:100turn{5,i}=[num2str(i) '分'];
endopen=zeros(6,8);           
%记录6个产品的加工进度,0表示未进行,1表示已开始(或已结束),2表示可选,3表示没有这个程序
for i=1:6open(i,1)=2;
end
for i=1:6for j=1:8if seq(i,j)==0open(i,j)=3;endend
endgongxu=zeros(6,1);
dai=zeros(4,1);
j=1;
s=[1	1	1	1	1	3	3	3
1	1	1	1	3	3	3	3
1	1	1	1	1	3	3	3
1	1	1	1	1	1	3	3
1	1	1	1	1	1	1	3
1	1	1	1	1	1	1	1];
while isequal(open,s)==0on=[];for i=1:4if turn{i,j}=='off'  
%在turn矩阵中逐列搜索,若设备处于关机状态,则作记录(可用)on=[on i];endendl1=length(on);for m=1:l1          %在整个生产计划中(对设备逐个)寻找能够选作操作的步骤[x,y]=find(open==2);l2=length(x);a=[x(1) y(1)];for k=1:l2   %对某个设备on(m),找出当前它能操作的步骤中耗时最小的一个if mes{on(m)}(a(1),a(2))>mes{on(m)}(x(k),y(k))a=[x(k) y(k)];endendif turn{on(m),j}=='off' & mes{on(m)}(a(1),a(2))~=100 
%若时间为100则意味着这个步骤不属于我们希望使用的那件设备while tim(a(1),a(2))>0turn{on(m),tim(a(1),a(2))+j-1}=a(1);tim(a(1),a(2))=tim(a(1),a(2))-1;endendendfor i=1:4if turn{i,j}~='off'dai(i)=turn{i,j};endendfor i=1:4if turn{i,j}~='off' & turn{i,j+1}=='off'gongxu(turn{i,j})=gongxu(turn{i,j})+1;open(turn{i,j},gongxu(turn{i,j}))=1;endif gongxu(dai(i))<8 & open(dai(i),gongxu(dai(i))+1)~=3 & turn{i,j+1}=='off'open(dai(i),gongxu(dai(i))+1)=2;endendj=j+1;
end

2.4 模型求解结果

每件产品的每个工序开工、完工时间表

在这里插入图片描述
每台设备承担任务的时间表

在这里插入图片描述
从结果中我们可以看到,使用这种方法,只需78个单位时间就可以完成所有的工序.而我们同时也可以在论文的开始部分看到,单就完成 就需耗费75个单位时间.可见这种方法得出的结果还是相当使人满意的,而且操作简单,可监测性强.

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

这篇关于2023年亚太杯数学建模思路 - 案例:最短时间生产计划安排的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406808

相关文章

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。