福州大学《嵌入式系统综合设计》实验四:边缘检测

2023-11-21 17:36

本文主要是介绍福州大学《嵌入式系统综合设计》实验四:边缘检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实验目的

BMCV 提供了一套基于 Sophon AI 芯片优化的机器视觉库,通过利用芯片的 TPU 和 VPP模块,可以完成色彩空间转换、尺度变换、仿射变换、透射变换、线性变换、画框、JPEG 编解码、BASE64 编解码、NMS、排序、特征匹配等操作。

本实验的目的是掌握算能的BMCV接口使用方法,掌握bmcv_sobel,bmcv_canny边缘检测函数的使用方法。

二、实验内容

基于套接字、多线程、同步锁机制实现多媒体文件的收发;

发送端Ubuntu的PC机读取文件,每1024个字节组成一个包通过TCP报文发送到接收端;接收端SE5上启动2个线程,线程1接收报文并将报文存入缓存;线程2通过缓存读取报文存入文件中;要求线程1和线程2之间通过同步锁进行线程同步。

  1. 编写代码,通过OpenCV读取图片文件,并调用BMCV的bmcv_sobel、bmcv_canny函数来实现对图片的边缘检测,最后输出检测结果。
  2. 直接利用OpenCV的边缘检测接口,实现边缘检测功能;
  3. 对比OpenCV与BMCV边缘检测所需要的时间;

三、开发环境

开发主机:Ubuntu 22.04 LTS

硬件:算能SE5

本地如果有SE5硬件,则可以PC机作为客户端,SE5作为服务器端。本地如果没有SE5硬件,只有云空间,则可以直接将客户端和服务器端都通过云空间实现,机在云空间的SE5模拟环境中实现。

四、实验器材

开发主机 + 云平台

五、实验过程与结论

5.1 BMCV关键函数解析

请参考算能BMCV开发资料:《BMCV User Guide》,也可以通过以下网址下载:

https://doc.sophgo.com/docs/2.7.0/docs_latest_release/bmcv/BMCV_User_Guide_zh.pdf

OpenCV的开发资料可参考《OpenCV官方文档》。

算能BMCV提供了bmcv_image_sobelbmcv_image_canny函数用于进行边缘检测。

bmcv_image_sobel

bm_status_t bmcv_image_sobel (
bm_handle_t handle,       //BMCV句柄
bm_image input,           //输入的BMI图片(待处理)
bm_image output,          //输出的BMI图片(处理结果)
int dx,                   //x 方向上的差分阶数
int dy)                   //y 方向上的差分阶数

具体函数接口说明如下:

(1)第二个参数和第三个参数图像的格式为bm_image,bm_image 需要外部调用 bmcv_image_creat创建。image 内存可以使用 bm_image_alloc_dev_mem 或者 bm_image_copy_host_to_device来开辟新的内存,或者使用 bmcv_image_attach 来 attach 已有的内存。

(2)dx, dy取值皆为1或0。 其中,dx=1,dy=0,表示计算X方向的导数,检测出的是垂直方向上的边缘;dx=0,dy=1,表示计算Y方向的导数,检测出的是垂直方向上的边缘。

(3) Sobel 核的大小,必须是-1,1,3,5 或7。其中特殊地,如果是-1 则使用3×3 Scharr 滤波器,如果是1 则使用3×1 或者1×3 的核。默认值为3。scale 为对求出的差分结果乘以的系数,默认值为1。Delta为在输出最终结果之前加上该偏移量,默认值为0。通常不需要对scale和Delta进行设置。

bmcv_image_canny

bm_status_t bmcv_image_canny (
bm_handle_t handle,
bm_image input,
bm_image output,
float threshold1,
float threshold2,
int aperture_size = 3,
bool l2gradient = false);

具体函数接口说明如下:

(1)第二个参数和第三个参数图像的格式为bm_image,bm_image 需要外部调用 bmcv_image_create 创建。image 内存可以使用 bm_image_alloc_dev_mem 或者 bm_image_copy_host_to_device来开辟新的内存,或者使用 bmcv_image_attach 来 attach 已有的内存。

(2)threshold1 和threshold2 为双阈值法的第一、第二个阈值。aperture_size 为 其中Sobel 核的大小,目前仅支持3。l2gradient 表示是否使用L2 范数来求图像梯度, 默认值为false,默认为由L1范数来求解图像梯度。

注意,BMCV的函数接口都是基于BMI格式进行图像处理。如上面的函数说明,其中第二个参数和第三个参数都是基于bm_image格式的。因此,需要首先通过OpenCV读取图片,并将图片格式转换为BMI格式后,才可以调用bmcv_image_sobel和bmcv_image_canny函数进行边缘检测。

本实验及实验5,实验6,实验7中使用BMCV相关函数的基本处理流程如下图所示,仅需调整红框模块中所调用的API即可实现不同实验功能:

4-1 实验流程框图

首先,本实例为了利用BMCV接口,需要引用相关的BMCV相关头文件:

#include "bmcv_api.h"

创建Mat类对象并读取图片数据:

# 创建OpenCV类对象
cv::Mat Input,Out;
# 读取第二个命令行参数存入mat对象中(读取数据)
Input = cv::imread(argv[1], 0);

注意,这里OpenCV类读取到的图片文件输出的格式是MAT格式,而BMCV处理的图片是bm_image格式,即BMCV对象。因此,我们需要先创建BMCV对象,然后将OpenCV类读取到的图片通过toBMI接口转换为BMCV对象。

# 创建BMCV对象
bm_image input, output;
bm_image_create(handle,height,width,FORMAT_GRAY,DATA_TYPE_EXT_1N_BYTE,&input);
# 以下是c++智能指针:划分一块内存区域并获取其信息
std::unique_ptr<unsigned char[]> src_data(new unsigned char[width * height]);
std::unique_ptr<unsigned char[]> res_data(new unsigned char[width * height]);

BMCV对象操作要求,在对象创建后,需要为该对象申请内部管理内存。如下函数所示:

bm_image_alloc_contiguous_mem(1, &input);
bm_image_alloc_contiguous_mem(1, &output);

也可以通过bm_image_alloc_dev_mem(input)函数申请内存:

bm_image_alloc_dev_mem(input)
bm_image_alloc_dev_mem(output);

然后通过toBMI函数将OpenCV读取的图片mat类数据转化为BMCV类数据,再调用bmcv_image_sobel函数进行处理:

cv::bmcv::toBMI(Input,&input);
# Sobel边缘检测
bmcv_image_sobel(handle, input, output, 0, 1)

需要注意的是这里用了toBMI函数实际内部做了一个内存同步的操作。也就是OpenCV读取的mat格式图片实际处于系统内存中,通过toBMI转换后同步到设备内存中。这里也可以通过bm_image_copy_host_to_device函数完成内存的同步。具体见上述的《BMCV User Guide110页中的示例代码所采用的方法。

将处理结果转化为mat数据格式保存

cv::bmcv::toMAT(&output, Out);
cv::imwrite("out.jpg", Out);

销毁内存

bm_image_free_contiguous_mem(1, &input);
bm_image_free_contiguous_mem(1, &output);
bm_image_destroy(input);
bm_image_destroy(output);
bm_dev_free(handle);

综上,我们可以得到利用BMCV sobel函数进行图像边缘检测的关键代码如下:

#include <iostream>
#include <vector>
#include "bmcv_api.h"
#include "common.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include <memory>using namespace cv;
using namespace std;int main(int argc, char *argv[]) {	
bm_handle_t handle;					  //获取句柄 bm_dev_request(&handle, 0);int width =  600;					   	  //定义图片数据 int height = 600;cv::Mat Input,Out,Test; 				   Input = cv::imread(argv[1], 0);	      //opencv读取图片,通过命令行参数传入// 智能指针获取分配内存数据 std::unique_ptr<unsigned char[]> src_data(new unsigned char[width * height]);std::unique_ptr<unsigned char[]> res_data(new unsigned char[width * height]);// bmcv处理 bm_image input, output;bm_image_create(handle,height,width,FORMAT_GRAY, DATA_TYPE_EXT_1N_BYTE,&input);bm_image_alloc_contiguous_mem(1, &input, 1); 	// 分配device memory unsigned char * input_img_data = src_data.get();bm_image_copy_host_to_device(input, (void **)&input_img_data);bm_image_create(handle,height,width,FORMAT_GRAY,DATA_TYPE_EXT_1N_BYTE,&output);bm_image_alloc_contiguous_mem(1, &output, 1);	cv::bmcv::toBMI(Input,&input);                  //自动进行内存同步// bmcv图像处理:caif (BM_SUCCESS != bmcv_image_sobel(handle, input, output, 0, 1)) {std::cout << "bmcv sobel error !!!" << std::endl;bm_image_destroy(input);bm_image_destroy(output);bm_dev_free(handle);return -1;}// 将输出结果转成mat数据并保存 cv::bmcv::toMAT(&output, Out);cv::imwrite("out.jpg", Out);bm_image_free_contiguous_mem(1, &input);bm_image_free_contiguous_mem(1, &output);bm_image_destroy(input);bm_image_destroy(output);bm_dev_free(handle);return 0; 
}

如果采用bmcv_image_canny函数进行边缘检测,只需要将上述代码中的bmcv_image_sobel函数改为bmcv_image_canny函数即可:

// bmcv图像处理:canny 
if (BM_SUCCESS != bmcv_image_canny(handle, input, output, 0, 200)) {td::cout << "bmcv canny error !!!" << std::endl;bm_image_destroy(input);bm_image_destroy(output);bm_dev_free(handle);exit(-1);
}

编写makfile文件:

DEBUG        ?= 0
PRODUCTFORM  ?= soc
BM_MEDIA_ION ?= 0INSTALL_DIR    ?= release//注意:这个地方一定要根据自己的目录路径进行设置
top_dir :=../../..ifeq ($(PRODUCTFORM),x86) # pcie modeCROSS_CC_PREFIX = x86_64-linux-
else # pcie_arm64 and soc modeCROSS_CC_PREFIX = aarch64-linux-gnu-
endifCC  = $(CROSS_CC_PREFIX)gcc
CXX = $(CROSS_CC_PREFIX)g++CPPFLAGS := -std=gnu++11 -fPIC -Wall -Wl,--fatal-warning
ifeq ($(DEBUG), 0)CPPFLAGS += -O2
elseCPPFLAGS += -g
endif# NATIVE API SDK
NATIVE_SDK_HEADERS:=-I$(top_dir)/include/decode
NATIVE_SDK_LDFLAGS:=-L$(top_dir)/lib/decode/${PRODUCTFORM}
NATIVE_SDK_LDLIBS :=-lbmion -lbmjpulite -lbmjpuapi -lbmvpulite -lbmvpuapi -lbmvideo -lbmvppapi -lyuv# FFMPEG SDK
FF_SDK_HEADERS := -I$(top_dir)/include/ffmpeg
FF_SDK_LDFLAGS := -L$(top_dir)/lib/ffmpeg/$(PRODUCTFORM)
FF_SDK_LDLIBS  := -lavcodec -lavformat -lavutil -lswresample -lswscale# OpenCV SDK
OCV_SDK_HEADERS := -I$(top_dir)/include/opencv/opencv4
OCV_SDK_LDFLAGS := -L$(top_dir)/lib/opencv/$(PRODUCTFORM)
OCV_SDK_LDLIBS  := -lopencv_core -lopencv_imgcodecs -lopencv_imgproc -lopencv_videoio# BMCV SDK
BMCV_SDK_HEADERS := -I$(top_dir)/include/bmlib
BMCV_SDK_LDFLAGS := -L$(top_dir)/lib/bmnn/$(PRODUCTFORM)
ifeq (${PRODUCTFORM}, x86)
BMCV_SDK_LDFLAGS :=  -L$(top_dir)/lib/bmnn/pcie
endif
BMCV_SDK_LDLIBS  := -lbmcv -lbmlibCPPFLAGS += $(NATIVE_SDK_HEADERS) $(FF_SDK_HEADERS) $(OCV_SDK_HEADERS) $(BMCV_SDK_HEADERS)
LDFLAGS  := $(NATIVE_SDK_LDFLAGS) $(FF_SDK_LDFLAGS) $(OCV_SDK_LDFLAGS)LDLIBS   := $(NATIVE_SDK_LDLIBS) $(FF_SDK_LDLIBS) $(OCV_SDK_LDLIBS) $(BMCV_SDK_LDLIBS) -lpthread -lstdc++TARGET=bmcv_sobel
MAKEFILE=Makefile
ALLOBJS=*.o
ALLDEPS=*.dep
RM=rm -rf
CP=cp -fSOURCES := bmcv_sobel.cppOBJECTPATHS:=$(patsubst %.cpp,%.o,$(SOURCES)).phony: all cleanall: $(TARGET)$(TARGET): $(OBJECTPATHS)$(CC) -o $@ $(OBJECTPATHS) $(LDFLAGS) $(LDLIBS)install: $(TARGET)install -d $(INSTALL_DIR)/bininstall $(TARGET) $(INSTALL_DIR)/binuninstall:$(RM) $(INSTALL_DIR)/bin/$(TARGET) clean:$(RM) $(TARGET)$(RM) $(ALLDEPS)$(RM) $(ALLOBJS)bmcv_sobel.o : bmcv_sobel.cpp $(MAKEFILE)$(CXX) $(CPPFLAGS) -c $< -o $@ -MD -MF $(@:.o=.dep)
LDLIBS   := $(NATIVE_SDK_LDLIBS) $(FF_SDK_LDLIBS) $(OCV_SDK_LDLIBS) $(BMCV_SDK_LDLIBS) -lpthread -lstdc++TARGET=bmcv_sobel
MAKEFILE=Makefile
ALLOBJS=*.o
ALLDEPS=*.dep
RM=rm -rf
CP=cp -fSOURCES := bmcv_sobel.cppOBJECTPATHS:=$(patsubst %.cpp,%.o,$(SOURCES)).phony: all cleanall: $(TARGET)$(TARGET): $(OBJECTPATHS)$(CC) -o $@ $(OBJECTPATHS) $(LDFLAGS) $(LDLIBS)install: $(TARGET)install -d $(INSTALL_DIR)/bininstall $(TARGET) $(INSTALL_DIR)/binuninstall:$(RM) $(INSTALL_DIR)/bin/$(TARGET) clean:$(RM) $(TARGET)$(RM) $(ALLDEPS)$(RM) $(ALLOBJS)bmcv_sobel.o : bmcv_sobel.cpp $(MAKEFILE)$(CXX) $(CPPFLAGS) -c $< -o $@ -MD -MF $(@:.o=.dep)
5.2 BMCV执行结果

向云平台或SE5上传待检测的图片,并执行如下代码:

./bmcv_sobel greycat.jpeg bmcv

运行程序后,对同一张图片进行处理所得出的sobelcanny边缘检测的两个结果:

Sobel:

Canny:

如上图所示,两种边缘检测都能大概检测出图像边缘,但精细程度不同。在实际应用时可选择自己所适合的方式选择合适的边缘检测方式。

5.3 OpenCV关键函数解析

OpenCV也提供了SobelCanny边缘检测算子,具体函数原型如下:

void cv::Canny(InputArray image,OutputArray  edges,double  threshold1,double 	threshold2,int 	apertureSize = 3,bool    L2gradient = false 
)void cv::Sobel(InputArray src,OutputArray dst, //输出图像,与输入图像src具有相同的尺寸和通道数,数据类型由第三个参数ddepth控制。int ddepth,    // ddepth:输出图像的数据类型(深度), 为-1时,输出图像的数据类型自动选择。int dx,int dy,int ksize = 3,double scale = 1,double delta = 0,int borderType = BORDER_DEFAULT) //像素外推法选择标志,默认为//BORDER_DEFAULT,表示不包含边界值倒序填充。

同名参数的含义与BMCV中参数含义相同。OpenCV下,不需要进行BMI转换,直接可以将读取到的MAT格式的图片通过sobel Canny接口进行处理。如下图所示:

//头文件
#include <opencv2/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
....
//关键代码
cv::Mat srcImage = cv::imread(argv[1], 1);
cv::Mat grayImage; 
cv::Mat srcImage1 = srcImage.clone();
cvtColor(srcImage, grayImage, COLOR_BGR2GRAY);
Mat dstImage, edge;
dstImage.create(srcImage1.size(), srcImage1.type());
dstImage = Scalar::all(0);
srcImage1.copyTo(dstImage, edge);

5.4 硬件加速性能对比

此外,在算能云平台上,基于BMCVsobel函数,因为使用了硬件加速,所以可以提升速率。

为验证执行程序所需的时间,须在运行时通过time命令来实现,如下图所示:

第一张图为用OpenCVsobel函数所需时间,第二张图为用bmcvsobel函数时所需的时间。经硬件加速后,程序所需的运行时间明显减少。

这篇关于福州大学《嵌入式系统综合设计》实验四:边缘检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/403937

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20