python运行hhsearch二进制命令的包装器类

2023-11-21 14:04

本文主要是介绍python运行hhsearch二进制命令的包装器类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

hhsearch 是 HMM-HMM(Hidden Markov Model to Hidden Markov Model)比对方法的一部分,属于 HMMER 软件套件。它用于进行蛋白质序列的高效比对,特别适用于检测远缘同源性。

以下是 hhsearch 的一些主要特点和用途:

  1. HMM-HMM比对: hhsearch 使用隐藏马尔可夫模型(HMM)来表示蛋白质家族的模型。与传统的序列-序列比对方法不同,HMM-HMM比对考虑了氨基酸残基的多序列信息,使得在比对中能够更好地捕捉蛋白质家族的模式和结构。

  2. 检测远缘同源性: hhsearch 的一个主要优势是其能够检测到相对远离的同源关系。它在比对中引入了更多的信息,从而提高了对远缘同源蛋白的发现能力。

  3. 灵敏度和特异性: hhsearch 的设计旨在在维持高灵敏度的同时,减少假阳性的比对。这使得它在寻找结构和功能相似性时更为可靠。

  4. 数据库搜索: 用户可以使用 hhsearch 在大型蛋白质数据库中搜索与给定蛋白质序列相似的蛋白质。

"""Library to run HHsearch from Python."""import glob
import os
import subprocess
from typing import Sequence, Optional, List, Iterable
from absl import logging
import contextlib
import tempfile
import dataclasses
import contextlib
import time
import shutil
import re@contextlib.contextmanager
def timing(msg: str):logging.info('Started %s', msg)tic = time.time()yieldtoc = time.time()logging.info('Finished %s in %.3f seconds', msg, toc - tic)@dataclasses.dataclass(frozen=True)
class TemplateHit:"""Class representing a template hit."""index: intname: straligned_cols: intsum_probs: Optional[float]query: strhit_sequence: strindices_query: List[int]indices_hit: List[int]@contextlib.contextmanager
def tmpdir_manager(base_dir: Optional[str] = None):"""Context manager that deletes a temporary directory on exit."""tmpdir = tempfile.mkdtemp(dir=base_dir)try:yield tmpdirfinally:shutil.rmtree(tmpdir, ignore_errors=True)def parse_hhr(hhr_string: str) -> Sequence[TemplateHit]:"""Parses the content of an entire HHR file."""lines = hhr_string.splitlines()# Each .hhr file starts with a results table, then has a sequence of hit# "paragraphs", each paragraph starting with a line 'No <hit number>'. We# iterate through each paragraph to parse each hit.block_starts = [i for i, line in enumerate(lines) if line.startswith('No ')]hits = []if block_starts:block_starts.append(len(lines))  # Add the end of the final block.for i in range(len(block_starts) - 1):hits.append(_parse_hhr_hit(lines[block_starts[i]:block_starts[i + 1]]))return hitsdef _parse_hhr_hit(detailed_lines: Sequence[str]) -> TemplateHit:"""Parses the detailed HMM HMM comparison section for a single Hit.This works on .hhr files generated from both HHBlits and HHSearch.Args:detailed_lines: A list of lines from a single comparison section between 2sequences (which each have their own HMM's)Returns:A dictionary with the information from that detailed comparison sectionRaises:RuntimeError: If a certain line cannot be processed"""# Parse first 2 lines.number_of_hit = int(detailed_lines[0].split()[-1])name_hit = detailed_lines[1][1:]# Parse the summary line.pattern = ('Probab=(.*)[\t ]*E-value=(.*)[\t ]*Score=(.*)[\t ]*Aligned_cols=(.*)[\t'' ]*Identities=(.*)%[\t ]*Similarity=(.*)[\t ]*Sum_probs=(.*)[\t '']*Template_Neff=(.*)')match = re.match(pattern, detailed_lines[2])if match is None:raise RuntimeError('Could not parse section: %s. Expected this: \n%s to contain summary.' %(detailed_lines, detailed_lines[2]))(_, _, _, aligned_cols, _, _, sum_probs, _) = [float(x)for x in match.groups()]# The next section reads the detailed comparisons. These are in a 'human# readable' format which has a fixed length. The strategy employed is to# assume that each block starts with the query sequence line, and to parse# that with a regexp in order to deduce the fixed length used for that block.query = ''hit_sequence = ''indices_query = []indices_hit = []length_block = Nonefor line in detailed_lines[3:]:# Parse the query sequence lineif (line.startswith('Q ') and not line.startswith('Q ss_dssp') andnot line.startswith('Q ss_pred') andnot line.startswith('Q Consensus')):# Thus the first 17 characters must be 'Q <query_name> ', and we can parse# everything after that.#              start    sequence       end       total_sequence_lengthpatt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*([0-9]*) \([0-9]*\)'groups = _get_hhr_line_regex_groups(patt, line[17:])# Get the length of the parsed block using the start and finish indices,# and ensure it is the same as the actual block length.start = int(groups[0]) - 1  # Make index zero based.delta_query = groups[1]end = int(groups[2])num_insertions = len([x for x in delta_query if x == '-'])length_block = end - start + num_insertionsassert length_block == len(delta_query)# Update the query sequence and indices list.query += delta_query_update_hhr_residue_indices_list(delta_query, start, indices_query)elif line.startswith('T '):# Parse the hit sequence.if (not line.startswith('T ss_dssp') andnot line.startswith('T ss_pred') andnot line.startswith('T Consensus')):# Thus the first 17 characters must be 'T <hit_name> ', and we can# parse everything after that.#              start    sequence       end     total_sequence_lengthpatt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*[0-9]* \([0-9]*\)'groups = _get_hhr_line_regex_groups(patt, line[17:])start = int(groups[0]) - 1  # Make index zero based.delta_hit_sequence = groups[1]assert length_block == len(delta_hit_sequence)# Update the hit sequence and indices list.hit_sequence += delta_hit_sequence_update_hhr_residue_indices_list(delta_hit_sequence, start, indices_hit)return TemplateHit(index=number_of_hit,name=name_hit,aligned_cols=int(aligned_cols),sum_probs=sum_probs,query=query,hit_sequence=hit_sequence,indices_query=indices_query,indices_hit=indices_hit,)def _get_hhr_line_regex_groups(regex_pattern: str, line: str) -> Sequence[Optional[str]]:match = re.match(regex_pattern, line)if match is None:raise RuntimeError(f'Could not parse query line {line}')return match.groups()def _update_hhr_residue_indices_list(sequence: str, start_index: int, indices_list: List[int]):"""Computes the relative indices for each residue with respect to the original sequence."""counter = start_indexfor symbol in sequence:if symbol == '-':indices_list.append(-1)else:indices_list.append(counter)counter += 1class HHSearch:"""Python wrapper of the HHsearch binary."""def __init__(self,*,binary_path: str,databases: Sequence[str],maxseq: int = 1_000_000):"""Initializes the Python HHsearch wrapper.Args:binary_path: The path to the HHsearch executable.databases: A sequence of HHsearch database paths. This should be thecommon prefix for the database files (i.e. up to but not including_hhm.ffindex etc.)maxseq: The maximum number of rows in an input alignment. Note that thisparameter is only supported in HHBlits version 3.1 and higher.Raises:RuntimeError: If HHsearch binary not found within the path."""self.binary_path = binary_pathself.databases = databasesself.maxseq = maxseq#for database_path in self.databases:#  if not glob.glob(database_path + '_*'):#    logging.error('Could not find HHsearch database %s', database_path)#    raise ValueError(f'Could not find HHsearch database {database_path}')@propertydef output_format(self) -> str:return 'hhr'@propertydef input_format(self) -> str:return 'a3m'def query(self, a3m: str) -> str:"""Queries the database using HHsearch using a given a3m."""with tmpdir_manager() as query_tmp_dir:input_path = os.path.join(query_tmp_dir, 'query.a3m')hhr_path = os.path.join(query_tmp_dir, 'output.hhr')with open(input_path, 'w') as f:f.write(a3m)db_cmd = []for db_path in self.databases:db_cmd.append('-d')db_cmd.append(db_path)cmd = [self.binary_path,'-i', input_path,'-o', hhr_path,'-maxseq', str(self.maxseq)] + db_cmdprint("cmd:",cmd)logging.info('Launching subprocess "%s"', ' '.join(cmd))process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)with timing('HHsearch query'):stdout, stderr = process.communicate()retcode = process.wait()if retcode:# Stderr is truncated to prevent proto size errors in Beam.raise RuntimeError('HHSearch failed:\nstdout:\n%s\n\nstderr:\n%s\n' % (stdout.decode('utf-8'), stderr[:100_000].decode('utf-8')))with open(hhr_path) as f:hhr = f.read()return hhrdef get_template_hits(self,output_string: str,input_sequence: str) -> Sequence[TemplateHit]:"""Gets parsed template hits from the raw string output by the tool."""del input_sequence  # Used by hmmseach but not needed for hhsearch.return parse_hhr(output_string)def convert_stockholm_to_a3m (stockholm_format: str,max_sequences: Optional[int] = None,remove_first_row_gaps: bool = True) -> str:"""Converts MSA in Stockholm format to the A3M format."""descriptions = {}sequences = {}reached_max_sequences = Falsefor line in stockholm_format.splitlines():reached_max_sequences = max_sequences and len(sequences) >= max_sequencesif line.strip() and not line.startswith(('#', '//')):# Ignore blank lines, markup and end symbols - remainder are alignment# sequence parts.seqname, aligned_seq = line.split(maxsplit=1)if seqname not in sequences:if reached_max_sequences:continuesequences[seqname] = ''sequences[seqname] += aligned_seqfor line in stockholm_format.splitlines():if line[:4] == '#=GS':# Description row - example format is:# #=GS UniRef90_Q9H5Z4/4-78            DE [subseq from] cDNA: FLJ22755 ...columns = line.split(maxsplit=3)seqname, feature = columns[1:3]value = columns[3] if len(columns) == 4 else ''if feature != 'DE':continueif reached_max_sequences and seqname not in sequences:continuedescriptions[seqname] = valueif len(descriptions) == len(sequences):break# Convert sto format to a3m line by linea3m_sequences = {}if remove_first_row_gaps:# query_sequence is assumed to be the first sequencequery_sequence = next(iter(sequences.values()))query_non_gaps = [res != '-' for res in query_sequence]for seqname, sto_sequence in sequences.items():# Dots are optional in a3m format and are commonly removed.out_sequence = sto_sequence.replace('.', '')if remove_first_row_gaps:out_sequence = ''.join(_convert_sto_seq_to_a3m(query_non_gaps, out_sequence))a3m_sequences[seqname] = out_sequencefasta_chunks = (f">{k} {descriptions.get(k, '')}\n{a3m_sequences[k]}"for k in a3m_sequences)return '\n'.join(fasta_chunks) + '\n'  # Include terminating newlinedef _convert_sto_seq_to_a3m(query_non_gaps: Sequence[bool], sto_seq: str) -> Iterable[str]:for is_query_res_non_gap, sequence_res in zip(query_non_gaps, sto_seq):if is_query_res_non_gap:yield sequence_reselif sequence_res != '-':yield sequence_res.lower()if __name__ == "__main__":### 1. 准备输入数据## 输入序列先通过Jackhmmer多次迭代从uniref90,MGnify数据库搜索同源序列,输出的多序列比对文件(如globins4.sto),转化为a3m格式后,再通过hhsearch从pdb数据库中找到同源序列input_fasta_file = '/home/zheng/test/Q94K49.fasta'## input_sequencewith open(input_fasta_file) as f:input_sequence = f.read()test_templates_sto_file = "/home/zheng/test/Q94K49_aln.sto"with open(test_templates_sto_file) as f:test_templates_sto = f.read()## sto格式转a3m格式()test_templates_a3m = convert_stockholm_to_a3m(test_templates_sto)hhsearch_binary_path = "/home/zheng/software/hhsuite-3.3.0-SSE2-Linux/bin/hhsearch"### 2.类实例化# scop70_1.75文件名前缀scop70_database_path = "/home/zheng/database/scop70_1.75_hhsuite3/scop70_1.75"pdb70_database_path = "/home/zheng/database/pdb70_from_mmcif_latest/pdb70"#hhsuite数据库下载地址:https://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/  ## 单一数据库#template_searcher = HHSearch(binary_path = hhsearch_binary_path,#                             databases = [scop70_database_path])## 多个数据库database_lst = [scop70_database_path, pdb70_database_path]template_searcher = HHSearch(binary_path = hhsearch_binary_path,databases = database_lst) ### 3. 同源序列搜索## 搜索结果返回.hhr文件字符串templates_result = template_searcher.query(test_templates_a3m)print(templates_result)## pdb序列信息列表template_hits = template_searcher.get_template_hits(output_string=templates_result, input_sequence=input_sequence)print(template_hits)

这篇关于python运行hhsearch二进制命令的包装器类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402793

相关文章

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t