本文主要是介绍【小白啃书】统计学习方法(李航第二版)代码实现 (C++) 之 2.K近邻(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
【统计学习方法(C++)】 K近邻(1)遍历法
- K近邻
- 写在前面(可以不看)
- 算法原理
- 训练
- 判断标签值
- 计算距离
- 根据距离排序
- 统计标签数量
- 将标签赋给待分类样本
- 调用这个函数
- 运行结果
- 一些说明
本文仅梳理总结自己在学习过程中的一些理解和思路,水平有限,理解粗鄙浅薄且不一定正确。文章所有观点均不保证绝对正确,请酌情参考。如果各位朋友发现任何错误请及时告诉我,大家一起讨论共同提高。
(不要问我为什么用C++写机器学习,问就是导师要求的)
希望我不鸽,咕咕
相关内容
0.导入数据
1.感知机
K近邻
写在前面(可以不看)
上一篇刚刚说过面向对象的思维不强的问题,写本次的程序的时候就切切实实地深受其害了。上课的时候老师曾经做过这样一个比方,一个对象就仿佛一个完整的人,有鼻子有眼睛有手,能说话能吃饭能跳舞。面向对象的方法要求我们在代码中,饭吃进嘴里,嘴连着喉管,把饭送进肠胃,而不是直接打开这个人的肠胃把食物塞进去,吃个饭都要拎着肠子到处乱跑。这次的代码让我切实地体会到了这种“拎着肠子满街乱跑”的感觉,无法拆分成独立的函数,更将某些部分无法移植到其他代码中使用,整个代码像一团乱码搅在一起竟然也实现了功能,就也还挺“鹅妹子嘤”的。
在本文中,我会把原本的代码贴上来,而在KNN(2)中则会放上修改过后的代码,以便让大家直观地感受一些两者之间的区别,也许会对大家更好地理解“面向对象”这一概念有些许帮助。
算法原理
网上总结太多了,书上也讲的详细,不多赘述。简而言之就是:
- 我离哪个(或k个)样本最近,我的标签就跟谁一样
当距离最近的k个样本标签不同的时候,通常选择少数服从多数的方法确定最后的标签。
训练
很显然,K近邻算法中不涉及训练,k为超参数,需要不断实验寻找效果最好的k值(所谓调参)
判断标签值
步骤如下
- 计算与每个样本的的距离
- 按距离排序
- 统计与待定样本点最近的K个样本的标签数量
- 最多的标签即视为待定样本点的标签
计算距离
计算距离使用的为欧氏距离,其计算公式为
d = sqrt( (x1-x2)2+(y1-y2)2 )
for (auto iter : Sample_feature){for (int i = 0; i < feature_num; i++){dis += pow((it_test.first[i] - iter.second[i]), 2);}dis = sqrt(dis);distance.insert(map<int, double>::value_type(iter.first, dis));}
这段代码中用到的pow(平方)函数和sqrt(开方)函数需要包括头文件cmath
#include<cmath>
根据距离排序
map一般会默认按照键值进行排序,而我们这里需要的确是按照值的大小进行排序,以便筛选出距离代求的样本点最近的K个样本。直接对map的value进行相对来说复杂,一般常用的方法是将map放入vector中,利用vector的sort函数进行排序。
将map中的内容放入vector
for (map<int, double>::iterator it = distance.begin(); it != distance.end(); it++){vec_distance.push_back(pair<int, double>(it->first, it->second));}
sort函数的参数有三个,sort(begin, end, storFun),分别为排序的起始位,终止位和排序方式。第三个参数缺省时默认从大到小排列,其他特殊的排序方式需要单独构建排序函数进行说明。我们这里的排序方式为按照vector的second项进行排序。
bool storFun(pair<int, double> a, pair<int, double> b)
{return a.second < b.second;
}
在此基础上,排序只需要一行代码就可以实现
sort(vec_distance.begin(), vec_distance.end(), storFun); //从大到小排序
统计标签数量
遍历前k项并统计其标签。特别的,map可以通过键值直接索引,当所查找的键值在map中不存在时还会自动增加此键值,这就给我们的统计带来了方便。我们不需要先得知总共出现了哪些标签值,只需要一行代码就可以完成标签的计数。
map_label_freq[label]++;
当程序读取到标签值时,会将map中对应的计数结果(value)加一,若map中没有这个标签,则会添加这个标签为新的键值。
将标签赋给待分类样本
通过遍历计数结果map来找到出现次数最多的标签,完成样本的分类。
for (auto it_map : map_label_freq){if (it_map.second>max_freq){max_freq = it_map.second;label = it_map.first;}}
调用这个函数
可以看到,我并没有写输出结果的代码(因为想偷懒),所以在KNN函数的最后我打了一个断点以便查看运行结果。
因为前面讲过的原因,整个代码中除了读取数据只有KNN一个功能函数,各种数据纠缠在一起,极度混乱:<
运行结果
最后的数字1为分类的正确率(虽然数据集是我自己写的在学习过程中这个数字并没有什么意义)
一些说明
为了方便大家看这个代码有多屎,我把这个代码完整复制在这里,如果对这一部分不感兴趣这篇文章阅读到这里就结束了。
结构更加清晰的程序我会在(2)中继续贴出来(如果我写得出来的话)
typedef string TLabel;
typedef double TFeature;
ifstream fin;
ofstream fout;bool storFun(pair<int, double> a, pair<int, double> b){……}int data_read(map<vector<TFeature>, TLabel> &Sample, string data_add, int &sample_num){……}void Sample_data_read(map<int, vector<TFeature>> &Sample_feature, map<int, TLabel>&Sample_label, map<vector<TFeature>, TLabel> &Sample, string data_add, int &sample_num){……}void KNN(int k)
{string data_add = ("F:\\learning ML\\KNN\\data.txt");string test_add = ("F:\\learning ML\\KNN\\test.txt");int feature_num = 0;int sample_num = 0;int test_sample_num = 0;double accuracy = 0;map<vector<TFeature>, TLabel> Sample;map<vector<TFeature>, TLabel> Test_Sample;map<int, vector<TFeature>> Sample_feature;map<int, TLabel>Sample_label;Sample_data_read(Sample_feature, Sample_label, Sample, data_add, sample_num);feature_num = data_read(Test_Sample, test_add, test_sample_num);//计算距离for (auto it_test : Test_Sample){double dis = 0;int index = 0;map<int, double> distance;vector<pair<int, double>> vec_distance;map<TLabel, int> map_label_freq;vector<pair<TLabel, int>>vec_label_freq;for (auto iter : Sample_feature){for (int i = 0; i < feature_num; i++){dis += pow((it_test.first[i] - iter.second[i]), 2);}dis = sqrt(dis);distance.insert(map<int, double>::value_type(iter.first, dis));}for (map<int, double>::iterator it = distance.begin(); it != distance.end(); it++){vec_distance.push_back(pair<int, double>(it->first, it->second));}sort(vec_distance.begin(), vec_distance.end(), storFun); //从大到小排序TLabel label;//统计分类for (int i = 0; i < k; i++){index = vec_distance[i].first;label = Sample_label[index];map_label_freq[label]++;}int max_freq = 0;for (auto it_map : map_label_freq){if (it_map.second>max_freq){max_freq = it_map.second;label = it_map.first;}}cout << "The test data belongs to the " << label << " label" << endl;if (label == it_test.second){accuracy++;}}accuracy = accuracy / test_sample_num;cout << accuracy << endl;system("pause");
}int main()
{int k;cout << "please input the k value : " << endl;cin >> k;KNN(k);}
源码和用到的数据集我打包放在KNN(1)
最后,错误及有待改进之处,希望各位大佬不吝赐教。
这篇关于【小白啃书】统计学习方法(李航第二版)代码实现 (C++) 之 2.K近邻(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!