【小白啃书】统计学习方法(李航第二版)代码实现 (C++) 之 2.K近邻(1)

2023-11-21 12:20

本文主要是介绍【小白啃书】统计学习方法(李航第二版)代码实现 (C++) 之 2.K近邻(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【统计学习方法(C++)】 K近邻(1)遍历法

  • K近邻
    • 写在前面(可以不看)
    • 算法原理
    • 训练
    • 判断标签值
      • 计算距离
      • 根据距离排序
      • 统计标签数量
      • 将标签赋给待分类样本
    • 调用这个函数
    • 运行结果
    • 一些说明

本文仅梳理总结自己在学习过程中的一些理解和思路,水平有限,理解粗鄙浅薄且不一定正确。文章所有观点均不保证绝对正确,请酌情参考。如果各位朋友发现任何错误请及时告诉我,大家一起讨论共同提高。
(不要问我为什么用C++写机器学习,问就是导师要求的)
希望我不鸽,咕咕

相关内容
0.导入数据
1.感知机

K近邻

写在前面(可以不看)

上一篇刚刚说过面向对象的思维不强的问题,写本次的程序的时候就切切实实地深受其害了。上课的时候老师曾经做过这样一个比方,一个对象就仿佛一个完整的人,有鼻子有眼睛有手,能说话能吃饭能跳舞。面向对象的方法要求我们在代码中,饭吃进嘴里,嘴连着喉管,把饭送进肠胃,而不是直接打开这个人的肠胃把食物塞进去,吃个饭都要拎着肠子到处乱跑。这次的代码让我切实地体会到了这种“拎着肠子满街乱跑”的感觉,无法拆分成独立的函数,更将某些部分无法移植到其他代码中使用,整个代码像一团乱码搅在一起竟然也实现了功能,就也还挺“鹅妹子嘤”的。
在本文中,我会把原本的代码贴上来,而在KNN(2)中则会放上修改过后的代码,以便让大家直观地感受一些两者之间的区别,也许会对大家更好地理解“面向对象”这一概念有些许帮助。

算法原理

网上总结太多了,书上也讲的详细,不多赘述。简而言之就是:

  • 我离哪个(或k个)样本最近,我的标签就跟谁一样

当距离最近的k个样本标签不同的时候,通常选择少数服从多数的方法确定最后的标签。

训练

很显然,K近邻算法中不涉及训练,k为超参数,需要不断实验寻找效果最好的k值(所谓调参)

判断标签值

步骤如下

  • 计算与每个样本的的距离
  • 按距离排序
  • 统计与待定样本点最近的K个样本的标签数量
  • 最多的标签即视为待定样本点的标签

计算距离

计算距离使用的为欧氏距离,其计算公式为

d = sqrt( (x1-x2)2+(y1-y2)2 )

for (auto iter : Sample_feature){for (int i = 0; i < feature_num; i++){dis += pow((it_test.first[i] - iter.second[i]), 2);}dis = sqrt(dis);distance.insert(map<int, double>::value_type(iter.first, dis));}

这段代码中用到的pow(平方)函数和sqrt(开方)函数需要包括头文件cmath

#include<cmath>

根据距离排序

map一般会默认按照键值进行排序,而我们这里需要的确是按照值的大小进行排序,以便筛选出距离代求的样本点最近的K个样本。直接对map的value进行相对来说复杂,一般常用的方法是将map放入vector中,利用vector的sort函数进行排序。
将map中的内容放入vector

for (map<int, double>::iterator it = distance.begin(); it != distance.end(); it++){vec_distance.push_back(pair<int, double>(it->first, it->second));}

sort函数的参数有三个,sort(begin, end, storFun),分别为排序的起始位,终止位和排序方式。第三个参数缺省时默认从大到小排列,其他特殊的排序方式需要单独构建排序函数进行说明。我们这里的排序方式为按照vector的second项进行排序。

bool storFun(pair<int, double> a, pair<int, double> b)
{return a.second < b.second;
}

在此基础上,排序只需要一行代码就可以实现

		sort(vec_distance.begin(), vec_distance.end(), storFun); //从大到小排序

统计标签数量

遍历前k项并统计其标签。特别的,map可以通过键值直接索引,当所查找的键值在map中不存在时还会自动增加此键值,这就给我们的统计带来了方便。我们不需要先得知总共出现了哪些标签值,只需要一行代码就可以完成标签的计数。

			map_label_freq[label]++;

当程序读取到标签值时,会将map中对应的计数结果(value)加一,若map中没有这个标签,则会添加这个标签为新的键值。

将标签赋给待分类样本

通过遍历计数结果map来找到出现次数最多的标签,完成样本的分类。

for (auto it_map : map_label_freq){if (it_map.second>max_freq){max_freq = it_map.second;label = it_map.first;}}

调用这个函数

可以看到,我并没有写输出结果的代码(因为想偷懒),所以在KNN函数的最后我打了一个断点以便查看运行结果。

因为前面讲过的原因,整个代码中除了读取数据只有KNN一个功能函数,各种数据纠缠在一起,极度混乱:<

运行结果

在这里插入图片描述
最后的数字1为分类的正确率(虽然数据集是我自己写的在学习过程中这个数字并没有什么意义)

一些说明

为了方便大家看这个代码有多屎,我把这个代码完整复制在这里,如果对这一部分不感兴趣这篇文章阅读到这里就结束了。
结构更加清晰的程序我会在(2)中继续贴出来(如果我写得出来的话)

typedef string TLabel;
typedef double TFeature;
ifstream fin;
ofstream fout;bool storFun(pair<int, double> a, pair<int, double> b){……}int data_read(map<vector<TFeature>, TLabel> &Sample, string data_add, int &sample_num){……}void Sample_data_read(map<int, vector<TFeature>> &Sample_feature, map<int, TLabel>&Sample_label, map<vector<TFeature>, TLabel> &Sample, string data_add, int &sample_num){……}void KNN(int k)
{string data_add = ("F:\\learning ML\\KNN\\data.txt");string test_add = ("F:\\learning ML\\KNN\\test.txt");int feature_num = 0;int sample_num = 0;int test_sample_num = 0;double accuracy = 0;map<vector<TFeature>, TLabel> Sample;map<vector<TFeature>, TLabel> Test_Sample;map<int, vector<TFeature>> Sample_feature;map<int, TLabel>Sample_label;Sample_data_read(Sample_feature, Sample_label, Sample, data_add, sample_num);feature_num = data_read(Test_Sample, test_add, test_sample_num);//计算距离for (auto it_test : Test_Sample){double dis = 0;int index = 0;map<int, double> distance;vector<pair<int, double>> vec_distance;map<TLabel, int> map_label_freq;vector<pair<TLabel, int>>vec_label_freq;for (auto iter : Sample_feature){for (int i = 0; i < feature_num; i++){dis += pow((it_test.first[i] - iter.second[i]), 2);}dis = sqrt(dis);distance.insert(map<int, double>::value_type(iter.first, dis));}for (map<int, double>::iterator it = distance.begin(); it != distance.end(); it++){vec_distance.push_back(pair<int, double>(it->first, it->second));}sort(vec_distance.begin(), vec_distance.end(), storFun); //从大到小排序TLabel label;//统计分类for (int i = 0; i < k; i++){index = vec_distance[i].first;label = Sample_label[index];map_label_freq[label]++;}int max_freq = 0;for (auto it_map : map_label_freq){if (it_map.second>max_freq){max_freq = it_map.second;label = it_map.first;}}cout << "The test data belongs to the " << label << " label" << endl;if (label == it_test.second){accuracy++;}}accuracy = accuracy / test_sample_num;cout << accuracy << endl;system("pause");
}int main()
{int k;cout << "please input the k value : " << endl;cin >> k;KNN(k);}

源码和用到的数据集我打包放在KNN(1)
在这里插入图片描述

最后,错误及有待改进之处,希望各位大佬不吝赐教。

这篇关于【小白啃书】统计学习方法(李航第二版)代码实现 (C++) 之 2.K近邻(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402306

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug