本文主要是介绍智能医疗影像诊断系统遭遇的骨感现实,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
[转] https://www.leiphone.com/news/201707/IEtzbgbBYBYY3nYp.html
2017年以来,关于人工智能泡沫的议论纷纷攘攘,知乎上一问题“这一波人工智能泡沫将会怎么破灭?”获广泛关注,其中,禀临科技联合创始人PENG Bo的观点得最高赞同票,他认为,“人工智能有些危险,因为现在变现似乎是个难题。”“目前看来,AI可能并不足以支撑一个独立的公司,它更适合作为其它公司的一个部门,或被其它公司收购。”
许多智能影像一线从业者可能会对其观点深表赞同。科大讯飞智慧医疗事业部医疗影像产品负责人马文君告诉雷锋网,“如今的智能影像很像前几年的互联网医疗,大家一窝蜂进来了,但下一步怎么做,是个问题。”汇医慧影梁恩铨认为,“整体来讲,智能影像诊断真正深入到临床诊断的很少,目前,业内尝试与医生合作做科研或提高效率方面尝试,但要真正提高诊断率,目前还有很大差距。”
动辄可以听到“AI取代医生”“AI的准确率超过医生”的言论,同时“理想很美好,现实很骨感”的感慨频频传来,理想的豪言壮语随处可见,那现实是什么呢?
有人说,21世纪是数据为王的时代;有人将算法比作发动机,数据比作石油;有人则强调行业数据、专家资源和核心技术是打造智能影像缺一不可的三要素。无论怎样强调数据的重要性都不为过,我们且以影像数据为径,智能影像公司的运营为纬,一窥智能影像公司的真实日常。
数据端:保证质量,数量多多益善
尽管我国存在第三方影像中心,但绝大多数的医疗影像数据来源于医院。据悉,大的三甲医院一年产生的影像数据在10T以上。宜远智能CEO吴博称,“单个医院的影像数据存量就很大,每天数百例新增也很常见。”
在医疗信息系统中,PACS系统负责医疗影像采集、数据传输存储以及影像分析、处理,并且不同的PACS系统之间,能以以DICOM国际标准方式对接。
总体来说,医院影像数据多且大都标准化,便于机器阅读,为此,智能医疗影像被业内人认为将率先实现商业化落地。
上海市儿童医院影像科主任杨秀军曾表示,“很多医学影像领域特别适合人工智能/图像识别技术,国内外有很多厂商从事这方面,也做出一些成果。”
吴博告诉雷锋网(公众号:雷锋网),对于AI ,影像数据本身具有标准化的优势。不过,数据异常也容易碰到。“以CT为例,有的病人不是躺着而是趴着扫描;有的不是头先进去而是脚先进去;CT长宽512像素或者768像素的差别,不同排数机器的层厚差异以及薄层重构算法,都会影响清晰度。”他补充道,“处理流程只要充分考虑和兼容这些变化情况,原始数据的可用比例还是非常高的。”
对于一个AI系统而言,数据多多益善是有前置条件的,在保证喂养数据质量的情况下,增加数量才有意义。而判断影像数据质量,主要取决于AI公司所打造智能诊断产品的临床目的。除此之外,对于智能影像诊断而言,影像数据需要关联更准确的诊断和后期结果关联,否则垃圾进,垃圾出。
南方医科大学副教授刘再毅曾表示,“我们数据多得不得了,我们影像科每天产生很多数据,但是有多少数据可以用?1%都不到,其中有大量错误信息。”他补充道,“数据规范的问题没有办法管控,临床信息经常有误。”
拿现在很火的肺结节智能诊断为例,对于AI公司来说,有肺结节的影像才是有价值的,“在产生的影像数据中,只有10%或20%的病人有问题,即便如此,并不是所有有病灶的影像数据都能拿来用。”梁恩铨称。而在医院内部,医学影像系统和诊断报告是两个独立的系统,两者并无关联。“用数据训练AI很重要的一点是:需要系统判断一个影像是否有结节,是否有病灶。而医院每天拍出来几百影像,并没有标出来哪里有结节,对于AI公司来说,这就是没有价值的数据。”梁恩铨告诉雷锋网。
数据获取:“合作”共赢
影像数据是医院的,智能影像公司如何获取呢?
医疗数据是一种资源,意味着它有价值,想获取有价值的东西最简单的逻辑就是“买买买”,这正是财大气粗的IBM的战略。在2014年相继收购了大数据医疗保健分析提供商Phytel与Explorys后,2015年,以10亿美元收购了医学成像及临床系统供应商Merge Healthcare,后者坐拥有8500家客户,其中包括美国联邦政府和州政府机构、雇主、医保、医院等,以及3亿病人数据。
在我国,三甲医院拥有绝大多数影像数据,但影像数据不出院是必须守住的红线。为此,AI公司与医院寻求“合作”就成了一种可能的路径。一般来说,AI公司会选择与医院合作开发,一方面得到脱敏的数据和行业专家,一方面收获了产品打磨的场景,至于合作模式,则各有特色。
一般来说,智能影像公司官网上的合作医院被视为彰显自身实力的背书。雷锋网从公司官网上了解到,推想科技称其与北京协和医院、同济医院、长海长征医院等5家三甲医院达成合作;科大讯飞先后与北京大学口腔医院、上海交通大学附属第六医院南院等多家医院合作;依图科技与浙江省人民医院合作。
刘再毅曾表示,非常希望与好的AI公司合作,以临床目的为中心共享研究成果。“我们临床数据最宝贵,光有技术没有临床数据,很多都是纸上谈兵。”
“我们现在不一定要获取数据,而是想使用数据,我们在和医生的合作中发现,他们对于数据共享持谨慎乐观和开放的态度,我们提供深度学习的经验,和对于数据标注、数据整理和数据隐私保护的方法论,结合医疗数据和专家只是,用科研服务、课题服务的形式结合起来。“吴博称道,宜远智能切入医疗影像领域,目前不以工具见长,而选择以贴身服务来做,同时,医疗影像数据敏感,处理算法要能分布式地下沉到数据所在位置,而不是一味期望数据统一归集到统一平台。
汇医慧影CEO柴象飞称,他们为顶级医生提供工具、方法合作共赢,而对于偏基层的医院,基于提供的IT工具之上,提供一些更加智能化、自动化的工具,同时不断收集数据,进行算法模型的迭代。这与其规划的商业模式是一致的,提高效率、降低误诊率的筛查类影像系统,短期内医院可以买单。至于与顶级医院的合作模式,公司高级市场经理梁恩铨披露道,与很多医院的合作是以科研合作的形式,最后的成果双方都有署名,“产品归我们,数据是医院的。”
数据处理:“只有人工,没有智能”
一如机器学习AI建模的流水线,医疗影像数据处理过程也要经历数据标注、清洗、切割,随后是建模、调参等。
在处理影像数据的技术问题上,据吴博介绍,医疗影像数据刻画的是体内脏器,与肉眼容易识别花鸟虫鱼人脸等常规图片,成像原理与视觉特征都不相同,深度学习模型尤其需要深度改造。
但医疗影像数据处理的特殊之处在于数据标注耗费时间更长、门槛更高,“要凑齐多名资深医生对数据进行比下诊断报告还要细致的标注,难度、进度和成本都很高。”吴博称。无怪乎,科大讯飞智慧医疗事业部总经理陶晓东称,行业数据、专家资源和核心技术是打造智能影像缺一不可的三要素,大多数AI公司与医院合作开发,由院内专家进行标注。
拿汇医慧影为例,医生使用其产品的同时就能对影像数据进行标注,产生他们需要的有效数据。“医生在看片的过程中,如果发现有病灶的影像,用我们的系统在病灶上直接标记。除此之外,系统中还集成了病理和病理数据,综合这些信息才能判断是否有癌症。”梁恩铨告诉雷锋网。而这引发了一个现实问题:数据产生速度很小。
在医生的诊断中,影像仅是一个参考信息,最终还要参考病理诊断等信息进行确诊,所以对于打造一个智能诊断系统来说,很多数据的集合才是有效的数据。对此,梁恩铨介绍道,AI公司需要尽可能多地打通不同的系统,把病人的所有相关信息整合在一起,这其实是比较难的。汇医慧影单独开发了一个数据平台,其中集成了数据清洗功能,把病理、病例和影像数据拿过来后,还要整合清洗。“医疗数据获取难,标注工作量大,我们自嘲所谓人工智能,只有人工没有智能。相对于机器视觉的其他领域,医学上走得还是要慢一些。”
实际效果:帮医生做科研或提高诊断效率
智能影像诊断系统准确率在95%以上,超过人类医生的消息屡见不鲜,但其应用情况怎样呢?
刘再毅曾表示,许多AI公司在训练其智能系统时没有甄别错误信息,导致真正投入临床时,准确率只有50%,“这就没有任何价值。”
梁恩铨称,“若想用AI提升诊断率,目前为止还有很大差距。”他表示,AI诊断结果是个概率的问题,只要不能达到100%的准确率,公司难以为那1%负责。除此之外,很多公司在肺结节诊断上做得很好,但对于一些癌症亚型,医生本身就很难判断,遑论AI了。“总体来说,真正深入临床流程的AI很少,现阶段,AI公司大都在帮医生做科研或在提高诊断效率方面尝试。”
将顶级专家的诊断能力固化下来,提供给基层医院,是许多智能影像公司勾勒的美好蓝图。科大讯飞智慧医疗事业部总经理陶晓东曾说道,智能影像诊断系统,对三甲医院的顶级医生是锦上添花的事;而基层放射科医生,每天只看四个片子,经验比较少,这就是雪中送炭的事。杭州认知科技副总经理王泰峰称,IBM Watson能提升基层医生的决策效率。
但实践起来同样遇到尴尬。人工智能是基于云计算的,数据放在云端,基层医院的信息化程度不够,没有大数据,怎么用人工智能?除此之外,大多数医院使用的是局域网系统,没法连接外网,数据也无法走上云端。
怎样说服医院同意把数据放在云端,也是一个棘手的问题。“如何充分保证数据隐私,这是很难突破的地方。”梁恩铨告诉雷锋网,“但相对于其他数据,影像数据含有的隐私信息较少,还是比较好沟通的。”
智能影像:风口已至,还是初露端倪?
有人说,投资人判断的不是行业趋势,而是时间点,判断机会在哪个时间点才是关键。如今,AI+医疗影像被认为是率先实现商业化落地的领域,这意味着风口已至,还是初露端倪?
刘再毅告诉雷锋网,“如果真正去做医学影像研究,会发现其中的陷阱、难度很多。我觉得这里面更多是做学术研究,真正落地到临床上是很难的,路还有很长。”上海市儿童医院影像科主任杨秀军表示,“有的智能诊断产品针对某一种病,比如开发出一种软件能更简便、更快捷地诊断皮肤癌,但绝大多数的病变不是那么简单的。”
梁恩铨认为,绝大多数智能诊断产品没有Follow临床工作流程,拿肺结节诊断来说,仅诊断出肺结节没有问题,不能确定是否有其他疾病,而误诊或漏诊的后果是非常严重的。
飞利浦大中华区临床科学部高级总监周振宇对此深以为然。此前,他出席雷锋网承办的CCF-GAIR大会上曾表示,“我今天来到这个会场,想看到更多人工智能在医学方面的应用,但是我们看到还是和十几年前一样的,我们得到的结果还是停留在纯粹数据驱动的结果上,100个肺结节找到多少百分比,这对于临床知识来说没有太大的价值。”他说道,“另外,从疾病和脏器来看,目前还是仅限于皮肤病、肺结节等相对容易做的器官。更多的人类疾病,中国人比较重要的肝脏、肾脏、乳腺等方面,其实各个厂家的涉足点都是比较缓慢的。”
这篇关于智能医疗影像诊断系统遭遇的骨感现实的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!