用Python制作欧洲杯可视化图表!

2023-11-20 20:10

本文主要是介绍用Python制作欧洲杯可视化图表!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近不少小伙伴都会熬夜看欧洲杯。今年的欧洲杯相比起往年的欧洲杯来说,可谓是冷门频出,出乎意料。

真的不知道,第一会花落谁家~

本期小F就和大家分享一下,用Python和Matplotlib绘制一个足球运动员的数据可视化图表。

来看一下C罗的情况,跟老詹一样高龄,真的佩服。

数据来源于下面两个网站,Understat和Fbref。

链接:https://understat.com/

链接:https://fbref.com/en/

欧洲足球五大联赛,英超、意甲、西甲、德甲、法甲。

先看一下射门数据的可视化,本质上和篮球的出手点图差不多,都是散点图类型。

导入相关的Python库。

import requests
from bs4 import BeautifulSoup as soup
import json
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl

从Understat网站爬取射门数据,使用BeautifulSoup、JSON和pandas解析和处理数据。

# 请求数据, C罗的ID为2371
url = 'https://understat.com/player/2371'
html = requests.get(url)# 解析处理数据
parse_soup = soup(html.content, 'lxml')
scripts = parse_soup.find_all('script')
strings = scripts[3].stringind_start = strings.index("('")+2
ind_end = strings.index("')")
json_data = strings[ind_start:ind_end]
json_data = json_data.encode('utf8').decode('unicode_escape')
data = json.loads(json_data)
print(data)
# 处理数据, 包含射门位置、预期进球、射门结果、赛季
x = []
y = []
xg = []
result = []
season = []
for i, _ in enumerate(data):for key in data[i]:if key == 'X':x.append(data[i][key])if key == 'Y':y.append(data[i][key])if key == 'xG':xg.append(data[i][key])if key == 'result':result.append(data[i][key])if key == 'season':season.append(data[i][key])
columns = ['X', 'Y', 'xG', 'Result', 'Season']
df_understat = pd.DataFrame([x, y, xg, result, season], index=columns)
df_understat = df_understat.T
df_understat = df_understat.apply(pd.to_numeric, errors='ignore')
# 得到最终的结果
print(df_understat)

此处的ID,通过查询球员名字可知

查询中国球员武磊,点击访问,在地址栏处,可以看到球员ID。

得到数据如下。

包含射门位置(x、y)、xG(预期进球)、射门结果、赛季。

其中x、y的坐标值为0~1之间,不适合在Matplotlib显示,所以选择放大100倍。

df_understat['X'] = df_understat['X'].apply(lambda x: x*100)
df_understat['Y'] = df_understat['Y'].apply(lambda x: x*100)
print(df_understat)

得到结果如下。

既然已经成功获取Understat网站的数据,就可以去获取Fbref网站的数据啦。

这里是球员的一些个人信息,以及赛季的平均数据。

比如全名、国家、位置、俱乐部、联赛、年龄、出生年份、上场时间、得分数据等等。

因为网页的数据是表格形式,所以直接使用pandas的read_html函数,解析表格爬取数据。

这个网站需要取消一下证书验证,要不然连接不成功。

# 全局取消证书验证import ssl
ssl._create_default_https_context = ssl._create_unverified_context

获取球员的相关数据。

def readfromhtml(filepath):# 选择第二个表格df = pd.read_html(filepath)[0]column_lst = list(df.columns)for index in range(len(column_lst)):column_lst[index] = column_lst[index][1]df.columns = column_lstdf.drop(df[df['Player'] == 'Player'].index, inplace=True)df = df.fillna('0')df.set_index('Rk', drop=True, inplace=True)try:df['Comp'] = df['Comp'].apply(lambda x: ' '.join(x.split()[1:]))df['Nation'] = df['Nation'].astype(str)df['Nation'] = df['Nation'].apply(lambda x: x.split()[-1])except:print('Error in uploading file:' + filepath)finally:df = df.apply(pd.to_numeric, errors='ignore')return df# 获取2020-2021欧洲五大联赛球员数据
df_fbref = readfromhtml('https://fbref.com/en/comps/Big5/shooting/players/Big-5-European-Leagues-Stats')
print(df_fbref)

得到结果如下。

数据都已经准备好了,那么我们就可以将数据绘制到图表上。

# 安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple mplsoccer
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple highlight_text

先安装mplsoccer、highlight_text这两个Python库。

其中mplsoccer库可以自定义绘制足球场,无需我们自己绘制场地图。

想了解更多,可以访问它的GitHub地址。

https://github.com/andrewRowlinson/mplsoccer

初始化一些设置,画布背景色、字体颜色、默认字体,字体大小,此处选择中文字体。

from highlight_text import ax_text,fig_text
import mplsoccer# 背景色
background = '#D6DBD9'
# 字体颜色
text_color = 'black'
mpl.rcParams['xtick.color'] = text_color
mpl.rcParams['ytick.color'] = text_color
mpl.rcParams['text.color'] = text_color
# 中文字体
mpl.rcParams['font.family'] = 'Songti SC'
mpl.rcParams['legend.fontsize'] = 12

新建一个画布。

# 新建画布
fig, ax = plt.subplots(figsize=(10, 8))
# 关闭坐标轴
ax.axis('off')
# 背景色填充
fig.set_facecolor(background)
plt.show()

显示如下。

绘制19-20赛季,C罗的进球情况。

# 垂直方向半个足球场
pitch = mplsoccer.VerticalPitch(half=True, pitch_type='opta', line_zorder=3, pitch_color='grass')
# 图表大小
ax_opta1 = fig.add_axes((0.05, 0.06, 0.45, 0.4))
ax_opta1.patch.set_facecolor(background)
pitch.draw(ax=ax_opta1)
plt.show()

通过设置mplsoccer的参数,绘制半个足球场。

果然,左下方有半个足球场。

将射门数据用散点图表示,分为进球得分和未成功进球得分两种情况。

# 2019-2020赛季, C罗射门位置散点图(未得分), 透明度0.6
df_fil = df_understat.loc[df_understat['Season'] == 2019]pitch.scatter(df_fil[df_fil['Result'] != 'Goal']['X'], df_fil[df_fil['Result'] != 'Goal']['Y'],s=np.sqrt(df_fil[df_fil['Result'] != 'Goal']['xG'])*100, marker='o', alpha=0.6,edgecolor='black', facecolor='grey', ax=ax_opta1)
plt.show()

未得分射门散点图。

得分散点图。

# 2019-2020赛季, C罗射门位置散点图(得分), 透明度0.9
pitch.scatter(df_fil[df_fil['Result'] == 'Goal']['X'], df_fil[df_fil['Result'] == 'Goal']['Y'],s=np.sqrt(df_fil[df_fil['Result'] == 'Goal']['xG'])*100, marker='o', alpha=0.9,edgecolor='black', facecolor='#6778d0', ax=ax_opta1, label='Goal')plt.show()

结果如下,失败的比成功的多。

这样,我们就将C罗在2019-2020赛季的所有射门点数据可视化出来了。

其中散点的大小,是预期进球的大小。

添加标签及图例,设置相应的位置、文字、字体等设置。

# 添加图例
ax_opta1.legend(loc='lower right').get_texts()[0].set_color("black")# 文字信息
ax_opta1.text(30, 61, '得分次数 : '+str(len(df_fil[df_fil['Result'] == 'Goal'])), weight='bold', size=11)
ax_opta1.text(30, 64, f"预期进球 : {round(sum(df_fil['xG']),2)}", weight='bold', size=11)
ax_opta1.text(30, 58, '射门次数 : '+str(len(df_fil)), weight='bold', size=11)
ax_opta1.text(90, 60, '2019-20赛季', weight='bold', size=14)plt.show()

成功添加附加信息。

显示赛季、xG、得分次数、射门次数信息。

同样将20-21赛季的数据绘制出来,放置在19-20赛季的右侧。

# 2020-2021赛季, C罗射门位置散点图
ax_opta2 = fig.add_axes((0.50, 0.06, 0.45, 0.4))
ax_opta2.patch.set_facecolor(background)
pitch.draw(ax=ax_opta2)# 根据条件, 筛选数据
df_fil = df_understat.loc[df_understat['Season'] == 2020]
# 未得分
pitch.scatter(df_fil[df_fil['Result'] != 'Goal']['X'], df_fil[df_fil['Result'] != 'Goal']['Y'],s=np.sqrt(df_fil[df_fil['Result']!='Goal']['xG'])*100, marker='o', alpha=0.6,edgecolor='black', facecolor='grey', ax=ax_opta2)
# 得分
pitch.scatter(df_fil[df_fil['Result']=='Goal']['X'], df_fil[df_fil['Result'] == 'Goal']['Y'],s=np.sqrt(df_fil[df_fil['Result'] == 'Goal']['xG'])*100, marker='o', alpha=0.9,edgecolor='black', facecolor='#6778d0', ax=ax_opta2, label='Goal')# 添加图例, 文字信息
ax_opta2.legend(loc='lower right').get_texts()[0].set_color("black")ax_opta2.text(30, 61, '得分次数 : '+str(len(df_fil[df_fil['Result'] == 'Goal'])), weight='bold', size=11)
ax_opta2.text(30, 64, f"预期进球 : {round(sum(df_fil['xG']),2)}", weight='bold', size=11)
ax_opta2.text(30, 58, '射门次数 : '+str(len(df_fil)), weight='bold', size=11)
ax_opta2.text(90, 60, '2020-21赛季', weight='bold', size=14)plt.show()

结果如下。

C罗老当益壮啊,状态一点也没有下滑。

下面接着绘制所有球员的数据散点图,看看C罗的数据能在哪一档?

# 初始化
ax_scatter = fig.add_axes([0.52, 0.57, 0.4, 0.35])
ax_scatter.patch.set_facecolor(background)
plt.show()

创建一个坐标轴。

首先对数据进行筛选,上场时间最少要有900s,而且位置为前锋此类的。

毕竟我们不能拿个守门员,跟C罗比数据吧,参考意义不大。

# 得到散点图的X, Y坐标值
no_90s = 10
df_fil = df_fbref[df_fbref['90s'] >= no_90s]
# 前锋位置
df_fil = df_fil[df_fil['Pos'].apply(lambda x: x in ['FW', 'MF,FW', 'FW,MF'])]# 每90s预期进球和得分次数
x, y = (df_fil['xG']/df_fil['90s']).to_list(), (df_fil['Gls']/df_fil['90s']).to_list()# 生成所有前锋位置, 数据散点图
ax_scatter.scatter(x, y, alpha=0.3, c='#EF8804')plt.show()

所有球员每90s预期进球和得分次数的数据情况。

现在我们筛选出C罗的数据,在散点图上用不同的颜色及透明度来突出显示它。

# C罗的数据
df_player = df_fil[df_fil['Player'] == 'Cristiano Ronaldo']
ax_scatter.scatter(df_player['xG']/df_player['90s'], df_player['Gls']/df_player['90s'], c='blue')plt.show()

结果如下。

可以看到C罗的数据还是比较高效的,虽不是第一,但也是前几的存在。

最后给散点图添加网格线,以及x轴和y轴标签。

# 添加网格线及标签
ax_scatter.grid(b=True, color='grey',linestyle='-.', linewidth=0.5,alpha=0.4)
ax_scatter.set_xlabel('每90秒的预期进球', fontdict={'fontsize': 12, 'weight': 'bold', 'color': text_color})
ax_scatter.set_ylabel('每90秒得分', fontdict=dict(fontsize=12, weight='bold', color=text_color))plt.show()

结果如下。

不愧是C罗,在2020-21赛季几乎每90秒就能进1颗球。

18年就已经有一个记录!C罗成历史第一位在90分钟内每分钟都有进球的球员

最后添加文本信息,包含标题,C罗的头像,场上位置、年龄、效力球队。

此处使用hightlight-text库,可以高亮文本。

# 添加C罗的头像
ax_player = fig.add_axes([0.03, 0.53, 0.25, 0.45])
ax_player.axis('off')
im = plt.imread('ronaldo.png')
ax_player.imshow(im)# 添加标题信息
fig_text(0.03, 0.94, "<克里斯蒂亚诺·罗纳尔多(C罗)> 赛季数据", weight='heavy', size=19, highlight_textprops=[{'color': 'blue'}])
fig_text(0.25, 0.85, '位置: <边锋>',weight='bold', size=15, highlight_textprops=[{'color':'#EF8804'}])
fig_text(0.25, 0.81, '年龄: <36>',weight='bold', size=15, highlight_textprops=[{'color':'red'}])# 添加俱乐部logo
ax_team = fig.add_axes([0.27, 0.55, 0.15, 0.15])
ax_team.axis('off')
im = plt.imread('FCJ.png')
ax_team.imshow(im)# 添加备注
fig_text(0.07, 0.03, '本图制作者:<小F>   数据来源:Fbref.com、Understat.com',size=12, highlight_textprops=[{'color': '#EF8804'}], weight='bold')
plt.show()

C罗的头像、效力的队伍logo,都是小F自己制作的。

得到结果如下。

保存为图片。

# 保存为图片
plt.savefig('ronaldo_viz.png', dpi=300, facecolor=background)

看起来还不错哦。

好了,本期的分享就到此结束了,有兴趣的小伙伴可以自行去实践学习。

使用到的代码及文件都已上传,公众号回复「小助手」即可获取足球的源码。

快给自己喜欢的足球运动员,也制作一个赛季数据面板吧!

推荐阅读:入门: 最全的零基础学Python的问题  | 零基础学了8个月的Python  | 实战项目 |学Python就是这条捷径干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 |   从万众期待到口碑扑街!唐探3令人失望  | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影趣味:弹球游戏  | 九宫格  | 漂亮的花 | 两百行Python《天天酷跑》游戏!AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!|  再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|年度爆款文案1).卧槽!Pdf转Word用Python轻松搞定!2).学Python真香!我用100行代码做了个网站,帮人PS旅行图片,赚个鸡腿吃3).首播过亿,火爆全网,我分析了《乘风破浪的姐姐》,发现了这些秘密 4).80行代码!用Python做一个哆来A梦分身 5).你必须掌握的20个python代码,短小精悍,用处无穷 6).30个Python奇淫技巧集 7).我总结的80页《菜鸟学Python精选干货.pdf》,都是干货 8).再见Python!我要学Go了!2500字深度分析!9).发现一个舔狗福利!这个Python爬虫神器太爽了,自动下载妹子图片点阅读原文,领AI全套资料!

这篇关于用Python制作欧洲杯可视化图表!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397127

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(