【形式化方法】PartB:LA/LP Applications(N皇后问题)

2023-11-20 16:10

本文主要是介绍【形式化方法】PartB:LA/LP Applications(N皇后问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

N-Queen Problem:

在作业3(挑战问题)中,我们在SAT之前解决了N个皇后的问题(4个皇后)。这个问题是关于把N个皇后放在一个N*N的棋盘上,这样就没有两个皇后互相威胁了。一种解决方案要求没有两个皇后共享同一行、列、对角线或反对角线。下图显示了N = 4的样本N -皇后谜题的解:

这个问题的目标是在一个N*N棋盘,找出存在多少个解。

SAT实现的基本思想是通过Bool值构造n-queen谜题约束。实际上,我们可以用LA来求解n-queen问题,它比SAT更容易理解,也更高效。其思路与求解子集和问题的思路相同。我们使用一个二维的0-1标志F来代表棋盘的每个单元格,F有值:

 满足 0 < i <N, 0< j < N 。我们可以建立n-queen谜题的约束条件如下:

  • 每一行只有一个皇后:   0 < i <N 
  • 每一列只有一个皇后:0 < j < N
  • 每条对角线最多有1个皇后:-N < d < N
  • 每条反对角线最多有1个皇后:  0 < d < 2N -1

Exercise 11: 阅读queen.py Python文件中的代码,完成n_queen_la()方法,该方法使用0-1 ILA解决n-queen问题。您可以通过参考我们上面讨论的模型来构造约束,或者您可以提出您自己的约束。

 

# LA算法解决N皇后问题
def n_queen_la(board_size: int, verbose: bool = False) -> int:solver = Solver()n = board_size# Each position of the board is represented by a 0-1 integer variable:#   ...    ...    ...    ...#   x_2_0  x_2_1  x_2_2  ...#   x_1_0  x_1_1  x_1_2  ...#   x_0_0  x_0_1  x_0_2  ...#board = [[Int(f"x_{row}_{col}") for col in range(n)] for row in range(n)]# only be 0 or 1 in boardfor row in board:for pos in row:solver.add(Or(pos == 0, pos == 1))# print(row)# @exercise 11: please fill in the missing code to add# the following constraint into the solver:#   each row has just 1 queen,#   each column has just 1 queen,#   each diagonal has at most 1 queen,#   each anti-diagonal has at most 1 queen.# raise Todo("exercise 11: please fill in the missing code.")for row in board:# print(row)solver.add(sum(row) == 1) # 约束1:一行只有一个皇后for col in board:# print(col)solver.add(sum(col) == 1) # 约束2: 一列只有一个皇后i = 0dia = []anti_dia = []# 对角线元素放到dia数组里面for row in board:j = 0for pos in row:if i == j:dia.append(pos)j = j + 1i = i + 1solver.add(sum(dia) <= 1)    # 约束3:对角线最多只有一个皇后# print(dia)# 反对角线元素放到anti_dia数组里面i = 0for row in board:j = 0for pos in row:if i + j == n-1 :anti_dia.append(pos)j = j + 1i = i + 1# print(anti_dia)solver.add(sum(anti_dia) <= 1)  # 约束4:反对角线最多只有一个皇后# count the number of solutionssolution_count = 0start = time.time()while solver.check() == sat:solution_count += 1model = solver.model()if verbose:# print the solutionprint([(row_index, col_index) for row_index, row in enumerate(board)for col_index, flag in enumerate(row) if model[flag] == 1])# generate constraints from solutionsolution_cons = [(flag == 1) for row in board for flag in row if model[flag] == 1]# add solution to the solver to get new solutionsolver.add(Not(And(solution_cons)))print(f"n_queen_la solve {board_size}-queens by {(time.time() - start):.6f}s")return solution_count

另一种解决N -queen问题的方法是使用回溯算法,但复杂度相对于棋盘大小N是指数级的。

Exercise 12:queen.py Python文件中的代码,在n_queen_bt()方法中有一个基于回溯的解决方案。尝试比较回溯算法和LA算法,通过改变棋盘大小N的值为其他值,哪一个更快?从结果中你能得出什么结论?

#回溯法解决N皇后问题
def n_queen_bt(board_size: int, verbose: bool = False) -> int:n = board_sizesolutions = [[]]def is_safe(col, solution):same_col = col in solutionsame_diag = any(abs(col - j) == (len(solution) - i) for i, j in enumerate(solution))return not (same_col or same_diag)start = time.time()for row in range(n):solutions = [solution + [col] for solution in solutions for col in range(n) if is_safe(col, solution)]print(f"n_queen_bt solve {board_size}-queens by {(time.time() - start):.6f}s")if verbose:# print the solutionsfor solution in solutions:print(list(enumerate(solution)))return len(solutions)

 

上述LA实现并不是求解n-queen问题的唯一算法。事实上,我们建立约束来描述问题的方式往往对算法的效率有很大的影响。

Exercise 13: 阅读queen.py Python文件中n_queen_la_opt()方法的代码。试着将此方法的效率与练习11中的实现进行比较。你的观察是什么?你能得出什么结论?

# LA优化算法解决N皇后问题
def n_queen_la_opt(board_size: int, verbose: bool = False) -> int:solver = Solver()n = board_size# We know each queen must be in a different row.# So, we represent each queen by a single integer: the column position# the q_i = j means queen in the row i and column j.queens = [Int(f"q_{i}") for i in range(n)]# each queen is in a column {0, ... 7 }solver.add([And(0 <= queens[i], queens[i] < n) for i in range(n)])# one queen per columnsolver.add([Distinct(queens)])# at most one for per anti-diagonal & diagonalsolver.add([If(i == j, True, And(queens[i] - queens[j] != i - j, queens[i] - queens[j] != j - i))for i in range(n) for j in range(i)])# count the number of solutionssolution_count = 0start = time.time()while solver.check() == sat:solution_count += 1model = solver.model()if verbose:# print the solutionsprint([(index, model[queen]) for index, queen in enumerate(queens)])# generate constraints from solutionsolution_cons = [(queen == model[queen]) for queen in queens]# add solution to the solver to get new solutionsolver.add(Not(And(solution_cons)))print(f"n_queen_la_opt solve {board_size}-queens by {(time.time() - start):.6f}s")return solution_count

 N = 4时,比较运行时间:

N = 5 时,比较运行时间:

结论:

三种算法解决N皇后问题效率的比较: 用回溯法最快、LA优化算法其次、LA算法最慢

 

#中科大软院-hbj形式化课程笔记-欢迎留言与私信交流

#随手点赞,我会更开心~~^_^

 

 

这篇关于【形式化方法】PartB:LA/LP Applications(N皇后问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395837

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T