R语言绘制散点图结合边际分布图

2023-11-20 15:50

本文主要是介绍R语言绘制散点图结合边际分布图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本博客主要介绍使用R语言利用ggplot绘制散点图,并且在图像的两边绘制边际分布图(包括边际直方图与边际密度函数)

我们这里介绍两种方法进行绘制:

  1. 主要使用ggExtra结合ggplot2两个R包进行绘制。(胜在简洁方便)
  2. 使用cowplotggpubr进行绘制。(胜在灵活且美观)

下面的绘图我们均以iris数据集为例。


1. 使用ggExtra结合ggplot2

1)传统散点图

# library
library(ggplot2)
library(ggExtra)# classic plot
p <- ggplot(iris) +geom_point(aes(x = Sepal.Length, y = Sepal.Width, color = Species), alpha = 0.6, shape = 16) +  # alpha 调整点的透明度;shape 调整点的形状theme_bw() +theme(legend.position = "bottom") + # 图例置于底部labs(x = "Sepal Length", y = "Sepal Width") # 添加x,y轴的名称
p


下面我们一行代码添加边际分布(分别以密度曲线与直方图的形式来展现):

2)密度函数

# marginal plot: density
ggMarginal(p, type = "density", groupColour = TRUE, groupFill = TRUE)

3)直方图

# marginal plot: histogram
ggMarginal(p, type = "histogram", groupColour = TRUE, groupFill = TRUE)

4)箱线图(宽窄的显示会有些问题)

# marginal plot: boxplot
ggMarginal(p, type = "boxplot", groupColour = TRUE, groupFill = TRUE)

5)小提琴图(会有重叠,不建议使用)

# marginal plot: violin
ggMarginal(p, type = "violin", groupColour = TRUE, groupFill = TRUE)

6)密度函数与直方图同时展现

# marginal plot: densigram
ggMarginal(p, type = "densigram", groupColour = TRUE, groupFill = TRUE)


2. 使用cowplotggpubr

1)重绘另一种散点图

# Scatter plot colored by groups ("Species")
sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",color = "Species", palette = "jco",size = 3, alpha = 0.6) +border() +theme(legend.position = "bottom")
sp

2)有缝拼接

① 密度函数
library(cowplot)# Marginal density plot of x (top panel) and y (right panel)
xplot <- ggdensity(iris, "Sepal.Length", fill = "Species",palette = "jco")
yplot <- ggdensity(iris, "Sepal.Width", fill = "Species", palette = "jco") +rotate()# Cleaning the plots
sp <- sp + rremove("legend")
yplot <- yplot + clean_theme() + rremove("legend")
xplot <- xplot + clean_theme() + rremove("legend")
# Arranging the plot using cowplot
plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", rel_widths = c(2, 1), rel_heights = c(1, 2))

② 未被压缩的箱线图
# Marginal boxplot of x (top panel) and y (right panel)
xplot <- ggboxplot(iris, x = "Species", y = "Sepal.Length", color = "Species", fill = "Species", palette = "jco",alpha = 0.5, ggtheme = theme_bw())+rotate()
yplot <- ggboxplot(iris, x = "Species", y = "Sepal.Width",color = "Species", fill = "Species", palette = "jco",alpha = 0.5, ggtheme = theme_bw())
# Cleaning the plots
sp <- sp + rremove("legend")
yplot <- yplot + clean_theme() + rremove("legend")
xplot <- xplot + clean_theme() + rremove("legend")
# Arranging the plot using cowplot
plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", rel_widths = c(2, 1), rel_heights = c(1, 2))

3)无缝拼接

# Main plot
pmain <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +geom_point() +color_palette("jco")
# Marginal densities along x axis
xdens <- axis_canvas(pmain, axis = "x") +geom_density(data = iris, aes(x = Sepal.Length, fill = Species),alpha = 0.7, size = 0.2) +fill_palette("jco")
# Marginal densities along y axis
# Need to set coord_flip = TRUE, if you plan to use coord_flip()
ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE) +geom_density(data = iris, aes(x = Sepal.Width, fill = Species),alpha = 0.7, size = 0.2) +coord_flip() +fill_palette("jco")
p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"), position = "right")
ggdraw(p2)


参考

  • Articles - ggpubr: Publication Ready Plots——Perfect Scatter Plots with Correlation and Marginal Histograms
  • Marginal distribution with ggplot2 and ggExtra

这篇关于R语言绘制散点图结合边际分布图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395725

相关文章

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【WebGPU Unleashed】1.1 绘制三角形

一部2024新的WebGPU教程,作者Shi Yan。内容很好,翻译过来与大家共享,内容上会有改动,加上自己的理解。更多精彩内容尽在 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信号:digital_twin123 在 3D 渲染领域,三角形是最基本的绘制元素。在这里,我们将学习如何绘制单个三角形。接下来我们将制作一个简单的着色器来定义三角形内的像素

Flutter 进阶:绘制加载动画

绘制加载动画:由小圆组成的大圆 1. 定义 LoadingScreen 类2. 实现 _LoadingScreenState 类3. 定义 LoadingPainter 类4. 总结 实现加载动画 我们需要定义两个类:LoadingScreen 和 LoadingPainter。LoadingScreen 负责控制动画的状态,而 LoadingPainter 则负责绘制动画。

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

C语言:柔性数组

数组定义 柔性数组 err int arr[0] = {0}; // ERROR 柔性数组 // 常见struct Test{int len;char arr[1024];} // 柔性数组struct Test{int len;char arr[0];}struct Test *t;t = malloc(sizeof(Test) + 11);strcpy(t->arr,

C语言指针入门 《C语言非常道》

C语言指针入门 《C语言非常道》 作为一个程序员,我接触 C 语言有十年了。有的朋友让我推荐 C 语言的参考书,我不敢乱推荐,尤其是国内作者写的书,往往七拼八凑,漏洞百出。 但是,李忠老师的《C语言非常道》值得一读。对了,李老师有个官网,网址是: 李忠老师官网 最棒的是,有配套的教学视频,可以试看。 试看点这里 接下来言归正传,讲解指针。以下内容很多都参考了李忠老师的《C语言非

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou