R语言绘制散点图结合边际分布图

2023-11-20 15:50

本文主要是介绍R语言绘制散点图结合边际分布图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本博客主要介绍使用R语言利用ggplot绘制散点图,并且在图像的两边绘制边际分布图(包括边际直方图与边际密度函数)

我们这里介绍两种方法进行绘制:

  1. 主要使用ggExtra结合ggplot2两个R包进行绘制。(胜在简洁方便)
  2. 使用cowplotggpubr进行绘制。(胜在灵活且美观)

下面的绘图我们均以iris数据集为例。


1. 使用ggExtra结合ggplot2

1)传统散点图

# library
library(ggplot2)
library(ggExtra)# classic plot
p <- ggplot(iris) +geom_point(aes(x = Sepal.Length, y = Sepal.Width, color = Species), alpha = 0.6, shape = 16) +  # alpha 调整点的透明度;shape 调整点的形状theme_bw() +theme(legend.position = "bottom") + # 图例置于底部labs(x = "Sepal Length", y = "Sepal Width") # 添加x,y轴的名称
p


下面我们一行代码添加边际分布(分别以密度曲线与直方图的形式来展现):

2)密度函数

# marginal plot: density
ggMarginal(p, type = "density", groupColour = TRUE, groupFill = TRUE)

3)直方图

# marginal plot: histogram
ggMarginal(p, type = "histogram", groupColour = TRUE, groupFill = TRUE)

4)箱线图(宽窄的显示会有些问题)

# marginal plot: boxplot
ggMarginal(p, type = "boxplot", groupColour = TRUE, groupFill = TRUE)

5)小提琴图(会有重叠,不建议使用)

# marginal plot: violin
ggMarginal(p, type = "violin", groupColour = TRUE, groupFill = TRUE)

6)密度函数与直方图同时展现

# marginal plot: densigram
ggMarginal(p, type = "densigram", groupColour = TRUE, groupFill = TRUE)


2. 使用cowplotggpubr

1)重绘另一种散点图

# Scatter plot colored by groups ("Species")
sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",color = "Species", palette = "jco",size = 3, alpha = 0.6) +border() +theme(legend.position = "bottom")
sp

2)有缝拼接

① 密度函数
library(cowplot)# Marginal density plot of x (top panel) and y (right panel)
xplot <- ggdensity(iris, "Sepal.Length", fill = "Species",palette = "jco")
yplot <- ggdensity(iris, "Sepal.Width", fill = "Species", palette = "jco") +rotate()# Cleaning the plots
sp <- sp + rremove("legend")
yplot <- yplot + clean_theme() + rremove("legend")
xplot <- xplot + clean_theme() + rremove("legend")
# Arranging the plot using cowplot
plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", rel_widths = c(2, 1), rel_heights = c(1, 2))

② 未被压缩的箱线图
# Marginal boxplot of x (top panel) and y (right panel)
xplot <- ggboxplot(iris, x = "Species", y = "Sepal.Length", color = "Species", fill = "Species", palette = "jco",alpha = 0.5, ggtheme = theme_bw())+rotate()
yplot <- ggboxplot(iris, x = "Species", y = "Sepal.Width",color = "Species", fill = "Species", palette = "jco",alpha = 0.5, ggtheme = theme_bw())
# Cleaning the plots
sp <- sp + rremove("legend")
yplot <- yplot + clean_theme() + rremove("legend")
xplot <- xplot + clean_theme() + rremove("legend")
# Arranging the plot using cowplot
plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", rel_widths = c(2, 1), rel_heights = c(1, 2))

3)无缝拼接

# Main plot
pmain <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +geom_point() +color_palette("jco")
# Marginal densities along x axis
xdens <- axis_canvas(pmain, axis = "x") +geom_density(data = iris, aes(x = Sepal.Length, fill = Species),alpha = 0.7, size = 0.2) +fill_palette("jco")
# Marginal densities along y axis
# Need to set coord_flip = TRUE, if you plan to use coord_flip()
ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE) +geom_density(data = iris, aes(x = Sepal.Width, fill = Species),alpha = 0.7, size = 0.2) +coord_flip() +fill_palette("jco")
p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"), position = "right")
ggdraw(p2)


参考

  • Articles - ggpubr: Publication Ready Plots——Perfect Scatter Plots with Correlation and Marginal Histograms
  • Marginal distribution with ggplot2 and ggExtra

这篇关于R语言绘制散点图结合边际分布图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395725

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英