论文阅读:“iOrthoPredictor: Model-guided Deep Prediction of Teeth Alignment“

本文主要是介绍论文阅读:“iOrthoPredictor: Model-guided Deep Prediction of Teeth Alignment“,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Introduction
  • Methodology
    • Problem Formulation
    • Conditional Geometry Generation
    • TSynNet
    • Aligned Teeth Silhouette Maps Generation
  • Results
  • References

Github 项目地址:https://github.com/Lingchen-chen/iOrthopredictor

在这里插入图片描述

Introduction

这篇文章提出了一种新颖的牙齿正畸治疗系统,叫作 iOrthoPredictor,它可以直接在人脸图片上预测牙齿排列整齐后的结果,只需给定一张前向的人脸图片(嘴巴需像上图一样张开,露出原始的不齐的牙齿)即可。

需要克服的问题:

  1. 需要准确的估计出牙龈及每颗牙齿的几何变换;
  2. 需要解决由牙齿位移、牙龈牙齿材质及光照条件造成的 in-mouth appearance changes;
  3. 需解决空洞及被遮挡部分的问题。

为了准确的估计出对齐牙齿的形状信息,iOrthoPredictor 还需要患者的 3D 牙模作为额外输入,并引入牙齿的 silhouette maps 来表示图片中的牙齿几何信息。这种表示方法可以借助 3D 牙模(通过口扫设备得到)准确的计算出 2D 的变换牙齿形状。而 in-mouth appearance 则被建模为一个隐向量(latent code),可以从输入图像中有效地提取出来。

整体的流程总结如下:

  1. 用卷积神经网络 TGeoNet 从人脸图片中提取 silhouette maps 以及口腔 mask;
  2. 根据提取出的 silhouette maps 对 3D 牙模的整体位姿进行优化;
  3. 用 MLP-based TAligNet 来学习对齐后的目标牙齿排列;
  4. 借助优化的整体位姿来将对齐牙齿的 silhouette 投影回到 2D 口腔区域,以生成目标牙齿的 geometry maps;
  5. 目标牙齿的 silhouette maps 以及嘴部区域的图片(用上面的口腔 mask 生成)作为一个生成式神经网络 TSynNet 的输入,来生成最终的图像。TSynNet 包含两个编码器,分别将输入的 geometry maps 和原始嘴部区域图片编码为 geometry code 以及 appearance code。

可参考下图进行理解:
在这里插入图片描述

Methodology

Problem Formulation

teeth geometry g g g:表明了牙齿 T \mathcal{T} T 的 2D 几何信息且反映了 T \mathcal{T} T 的牙齿排布;

in-mouth appearance z z z:可描述随表面属性和光照条件变化而变化的 in-mouth appearance。

在实际中,牙齿的几何信息可以被显示的表示(例如通过一个牙齿的轮廓图),但外观信息更加抽象一些。所以这篇文章直接从数据中学习出一个隐编码来表示外观。

Conditional Geometry Generation

2D Geometry Maps. g g g 用和输入图像 x x x 相同分辨率的图像来表示。2D 牙齿的 silhouettes g y g_y gy 包含上颌牙齿的 silhouette map g u g_u gu、下颌牙齿的 silhouette map g l g_l gl 以及口腔 mask g m g_m gm
在这里插入图片描述
TGeoNet. 输入:嘴部照片 x x x (上图 a);输出:三个 binary maps { g ˉ u , g ˉ l , g ˉ m } \{\bar{g}_u,\bar{g}_l,\bar{g}_m\} {gˉu,gˉl,gˉm}TGeoNet 基于 U-Net 结构,包括一个编码器、一个解码器以及 skip connections,如下图所示。
在这里插入图片描述

TSynNet

TSynNet 包括一个 appearance 编码器 M \mathcal{M} M 以及生成网络 N \mathcal{N} N。生成网络 N \mathcal{N} N 进一步包括用来提取 geometry code 的编码器 N e n c \mathcal{N}_{enc} Nenc 以及解码器 N d e c \mathcal{N}_{dec} Ndec N d e c \mathcal{N}_{dec} Ndec 的输入为 geometry code 和从 M \mathcal{M} M 中提取出的 appearance code。

TSynNet 仅生成口腔区域,其他部分直接使用原始人脸图片的对应部分。

为了使得 teeth geometry 和 appearance 这两个特征充分的解缠绕,这篇文章借鉴了 style transfer 的思想:将 in-mouth appearance 看作 style code,输入到每个解码块中。

TSynNet 的结构如下图所示:
在这里插入图片描述

Aligned Teeth Silhouette Maps Generation

为了生成最终牙齿对齐的嘴部图片 x ^ \hat{x} x^,我们需要有目标牙齿的 silhouette maps { g ^ u , g ^ l } \{\hat{g}_u,\hat{g}_l\} {g^u,g^l}

首先对 3D 牙模 T \mathcal{T} T 的整体位姿进行优化,来匹配 TGeoNet 的输出 silhouette maps { g ˉ u , g ˉ l } \{\bar{g}_u,\bar{g}_l\} {gˉu,gˉl},之后就需要通过 TAligNet 来自动计算单独牙齿的对齐位姿。

然后,对齐后的牙齿模型 T ^ \hat{\mathcal{T}} T^ 会被投影到嘴部区域来生成我们想要的目标牙齿的 silhouette maps { g ^ u , g ^ l } \{\hat{g}_u,\hat{g}_l\} {g^u,g^l}

整个过程中有两个关键步骤:global teeth pose fitting 和 3D teeth alignment.

global teeth pose fitting. 3D 牙模 T \mathcal{T} T 可以被分为上牙颌 T u \mathcal{T}_u Tu 和下牙颌 T l \mathcal{T}_l Tl,这里使用 { g ˉ u , g ˉ l , g ˉ m } \{\bar{g}_u,\bar{g}_l,\bar{g}_m\} {gˉu,gˉl,gˉm} T \mathcal{T} T 来分别 fit 上下牙颌的变换矩阵。

3D teeth alignment. 通过 TAligNet 来对输入 3D 牙模中的每个牙齿进行对齐。每颗牙齿的位姿用一个 7 维向量 v = ( v p , v q ) v=(v^p,v_q) v=(vp,vq) 来表示,其中 v p v^p vp 代表 3D 位置而 v q v^q vq 则是一个四元数,代表 orientation。

TAligNet 用 PointNet 自编码器来独立的编码每颗牙齿的几何信息,具体来说,编码器是 PointNet,而解码器则是一个简单的 MLP。编码器的输入是从每颗牙齿采样出的 1024 个采样点,输出则是一个 100 维的代表牙齿几何信息的 latent code。TAligNet 结构如下图所示。
在这里插入图片描述

Results

在这里插入图片描述

References

Lingchen Yang, Zefeng Shi, Yiqian Wu, Xiang Li, Kun Zhou, Hongbo Fu, and Youyi Zheng. 2020. iOrthoPredictor: Model-guided Deep Prediction of Teeth Alignment. ACM Trans. Graph. 39, 6, Article 216 (December 2020), 15 pages. https://doi.org/10.1145/3414685.3417771

这篇关于论文阅读:“iOrthoPredictor: Model-guided Deep Prediction of Teeth Alignment“的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394748

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

MVC(Model-View-Controller)和MVVM(Model-View-ViewModel)

1、MVC MVC(Model-View-Controller) 是一种常用的架构模式,用于分离应用程序的逻辑、数据和展示。它通过三个核心组件(模型、视图和控制器)将应用程序的业务逻辑与用户界面隔离,促进代码的可维护性、可扩展性和模块化。在 MVC 模式中,各组件可以与多种设计模式结合使用,以增强灵活性和可维护性。以下是 MVC 各组件与常见设计模式的关系和作用: 1. Model(模型)

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需