rasa train nlu详解:1.1-train_nlu()函数

2023-11-12 01:20
文章标签 函数 详解 1.1 train rasa nlu

本文主要是介绍rasa train nlu详解:1.1-train_nlu()函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文使用《使用ResponseSelector实现校园招聘FAQ机器人》中的例子,主要详解介绍train_nlu()函数中变量的具体值。

一.rasa/model_training.py/train_nlu()函数
  train_nlu()函数实现,如下所示:

def train_nlu(config: Text,nlu_data: Optional[Text],output: Text,fixed_model_name: Optional[Text] = None,persist_nlu_training_data: bool = False,additional_arguments: Optional[Dict] = None,domain: Optional[Union[Domain, Text]] = None,model_to_finetune: Optional[Text] = None,finetuning_epoch_fraction: float = 1.0,
) -> Optional[Text]:"""Trains an NLU model.  # 训练一个NLU模型。Args:config: Path to the config file for NLU.  # NLU的配置文件路径。nlu_data: Path to the NLU training data.  # NLU训练数据的路径。output: Output path.  # 输出路径。fixed_model_name: Name of the model to be stored.  # 要存储的模型的名称。persist_nlu_training_data: `True` if the NLU training data should be persisted with the model.  # 如果NLU训练数据应该与模型一起持久化,则为`True`。additional_arguments: Additional training parameters which will be passed to the `train` method of each component.  # 将传递给每个组件的`train`方法的其他训练参数。domain: Path to the optional domain file/Domain object.  # 可选domain文件/domain对象的路径。model_to_finetune: Optional path to a model which should be finetuned or a directory in case the latest trained model should be used.  # 可选路径,指向应该进行微调的模型,或者在应该使用最新训练的模型的情况下指向一个目录。finetuning_epoch_fraction: The fraction currently specified training epochs in the model configuration which should be used for finetuning.  # 模型配置中当前指定的训练时期的fraction,应该用于微调。Returns:Path to the model archive.  # 模型归档的路径。"""if not nlu_data:  # 没有NLU数据rasa.shared.utils.cli.print_error(  # 打印错误"No NLU data given. Please provide NLU data in order to train "  # 没有给出NLU数据。请提供NLU数据以训练"a Rasa NLU model using the '--nlu' argument."  # 使用--nlu参数训练Rasa NLU模型)return None# 只训练NLU,因此仍然必须选择训练文件file_importer = TrainingDataImporter.load_nlu_importer_from_config(config, domain, training_data_paths=[nlu_data], args=additional_arguments)training_data = file_importer.get_nlu_data()  # 获取NLU数据if training_data.contains_no_pure_nlu_data():  # 如果没有纯NLU数据rasa.shared.utils.cli.print_error(  # 打印错误f"Path '{nlu_data}' doesn't contain valid NLU data in it. "  # 路径{nlu_data}中不包含有效的NLU数据f"Please verify the data format. "  # 请验证数据格式f"The NLU model training will be skipped now."  # 现在将跳过NLU模型训练)return Nonereturn _train_graph(  # 训练图file_importer,  # 文件导入器training_type=TrainingType.NLU,  # 训练类型output_path=output,  # 输出路径model_to_finetune=model_to_finetune,  # 模型微调fixed_model_name=fixed_model_name,  # 固定模型名称finetuning_epoch_fraction=finetuning_epoch_fraction,  # 微调时期fractionpersist_nlu_training_data=persist_nlu_training_data,  # 持久化NLU训练数据**(additional_arguments or {}),  # 额外的参数).model  # 模型

1.传递来的形参数据
  形参config=“config.yml”,nlu_data=“data”,output=“models”,persist_nlu_training_data=False,其它的都是None,如下所示:

2.train_nlu()函数组成
  该函数主要由3个方法组成,如下所示:

  • file_importer = TrainingDataImporter.load_nlu_importer_from_config(*) #file_importer数据类型为NluDataImporter
  • training_data = file_importer.get_nlu_data() #根据nlu数据创建一个TrainingData类对象
  • return _train_graph(*) #训练config.yml文件中pipline对应的图

二.training_data数据类型
  training_data数据类型为rasa.shared.nlu.training_data.training_data.TrainingData,如下所示:

1.MIN_EXAMPLES_PER_ENTITY=2
每个实体的最小样本数量。

2.MIN_EXAMPLES_PER_INTENT=2
每个意图的最小样本数量。

3.action_names=set()
action名字集合。

4.entities=set()
entity集合。

5.entity_examples=[]
entity例子集合。

6.entity_groups=set()
entity组的集合。

7.entity_roles=set()
entity角色集合。

8.entity_synonyms=set()
entity近义词集合。

9.intent_examples=[25*Message]
  intent例子列表,列表中数据为rasa.shared.nlu.training_data.message.Message数据结构。对于普通意图,Message数据结构如下所示:

  对于检索意图,Message数据结构如下所示:

10.intents
具体数值为set(‘faq’, ‘goodbye’, ‘greet’)。

11.lookup_tables=[]
查找表。

12.nlu_examples=[25*Message]
内容和intent_examples相同,不再介绍。

13.number_of_examples_per_entity
每个entity例子的数量。

14.number_of_examples_per_intent
每个intent例子的数量,即{‘faq’: 14, ‘goodbye’: 5, ‘greet’: 6}。

15.number_of_examples_per_response
  每个response例子的数量,如下所示:

{'faq/notes': 1, 'faq/work_location': 1, 'faq/max_job_request': 1, 'faq/audit': 1, 'faq/write_exam_participate': 1, 'faq/write_exam_location': 1, 'faq/write_exam_again': 1, 'faq/write_exam_with-out-offer': 1, 'faq/interview_arrangement': 1, 'faq/interview_times': 1, 'faq/interview_from': 1, 'faq/interview_clothing': 1, 'faq/interview_paperwork': 1, 'faq/interview_result': 1}  

16.regex_features=[]
正则特征。

17.response_examples=[14*Message]
  response例子,如下所示:

18.responses
  response例子,如下所示:

19.retrieval_intents=set(‘faq’)
检索意图。

20.training_examples=[25*Message]
内容和intent_examples相同,不再介绍。

参考文献:
[1]https://github.com/RasaHQ/rasa
[2]rasa 3.2.10 NLU模块的训练:https://zhuanlan.zhihu.com/p/574935615

这篇关于rasa train nlu详解:1.1-train_nlu()函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394130

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

java中反射Reflection的4个作用详解

《java中反射Reflection的4个作用详解》反射Reflection是Java等编程语言中的一个重要特性,它允许程序在运行时进行自我检查和对内部成员(如字段、方法、类等)的操作,本文将详细介绍... 目录作用1、在运行时判断任意一个对象所属的类作用2、在运行时构造任意一个类的对象作用3、在运行时判断

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语