回溯法--旅行售货员问题

2023-11-11 22:40
文章标签 问题 回溯 旅行 售货员

本文主要是介绍回溯法--旅行售货员问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

全排列回溯

 

 

 

#include <iostream>
using namespace std;
const int max_ = 0x3f3f3f;   //定义一个最大值
const int NoEdge = -1;      //两个点之间没有边
int citynum;                //城市数
int edgenum;                //边数
int currentcost;            //记录当前的路程
int bestcost;               //记录最小的路程(最优)
int Graph[100][100];        //图的边距记录
int x[100];                 //记录行走顺序
int bestx[100];             //记录最优行走顺序void InPut()
{int pos1, pos2, len;     //点1 点2 距离cout<<"请输入城市数和边数(c e):";cin>>citynum>>edgenum;memset(Graph, NoEdge, sizeof(Graph));cout<<"请输入两座城市之间的距离(p1 p2 l):"<<endl;for(int i = 1; i <= edgenum; ++i){cin>>pos1>>pos2>>len;Graph[pos1][pos2] = Graph[pos2][pos1] = len;}
}//初始化
void Initilize()
{currentcost = 0;bestcost = max_;for(int i = 1; i <= citynum; ++i){x[i] = i;}
}void Swap(int &a, int &b)
{int temp;temp = a;a = b;b = temp;
}void BackTrack(int i) //这里的i代表第i步去的城市而不是代号为i的城市
{if(i == citynum){//进行一系列判断,注意的是进入此步骤的层数应是叶子节点的父节点,而不是叶子节点if(Graph[x[i - 1]][x[i]] != NoEdge && Graph[x[i]][x[1]] != NoEdge && (currentcost + Graph[x[i - 1]][x[i]] + Graph[x[i]][x[1]] < bestcost || bestcost == max_)){//最小(优)距离=当前的距离+当前城市到叶子城市的距离+叶子城市到初始城市的距离bestcost = currentcost + Graph[x[i - 1]][x[i]] + Graph[x[i]][x[1]];for(int j = 1; j <= citynum; ++j)bestx[j] = x[j];}}else{for(int j =  i; j <= citynum; ++j){if(Graph[x[i - 1]][x[j]] != NoEdge && (currentcost + Graph[x[i - 1]][x[j]] < bestcost || bestcost == max_)){Swap(x[i], x[j]);  //这里i 和 j的位置交换了, 所以下面的是currentcost += Graph[x[i - 1]][x[i]];currentcost += Graph[x[i - 1]][x[i]];BackTrack(i + 1);   //递归进入下一个城市currentcost -= Graph[x[i - 1]][x[i]];Swap(x[i], x[j]);}}}
}void OutPut()
{cout<<"最短路程为:"<<bestcost<<endl;cout << "路线为:" << endl;for(int i = 1; i <= citynum; ++i)cout << bestx[i] << " ";cout << "1" << endl;
}int main()
{InPut();Initilize();BackTrack(2);OutPut();
}

 

这篇关于回溯法--旅行售货员问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393305

相关文章

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo