旅行售货员问题(C++)

2023-11-11 22:40
文章标签 c++ 问题 旅行 售货员

本文主要是介绍旅行售货员问题(C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编译环境:Dev-C++

分支界限法解旅行售货员问题的具体算法实现


旅行售货员问题描述:

        某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。他要选定一条从驻地出发,经过每个城市一次,最后回到驻地的路线,使总的路程(或总旅费)最小。

算法描述:

        路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括V中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。 旅行售货员问题的解空间可以组织成一棵排列树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图G中找出费用最小的周游路线。 

        解旅行售货员问题的优先队列式分支限界法用优先队列存储活结点表。活结点m在优先队列中的优先级定义为:  活结点m对应的子树费用下界lcost,lcost=cc+rcost,其中,cc为当前结点费用,rcost为当前顶点最小出边费用加上剩余所有顶点的最小出边费用和。

      创建一个最小堆,用于表示活结点优先队列。堆中每个结点的优先级是子树费用的下界lcost值。计算每个顶点i的最小出边费用并用minout[i]记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法结束。基于优先队列式分支限界的旅行售货员问题求解算法,采用限界函数lcost ,作为优先级,不断调整搜索方向,选择最有可能取得最优解的子树优先搜索;同时,根据限界函数lcost进行剪枝,剪掉不包含最优解的分。


算法步骤:

      ①状态A表示售货员没有经过任何路径。此时cc 和 rcost 都为0。以此为初始状态,加入优先队列(最小堆)。

      ②之后取出堆顶,此活节点成为扩展节点,扩展出多个儿子节点。检测所有儿子节点的lcost值,lcost = cc+rcost,其含义为至少需要花费lcost的费用,所以比较lcost和bestc的值。

      ③若lcost > bestc,则它所在的子树再也不会小于bestc,剪枝。

      ④若lcost < bestc,则说明它的子树有可能会得到最优解,因此此儿子节点进入优先队列。

      ⑤每次搜索到叶节点,更新bestc,bestc = cc + a[n-2][n-1]+a[n-1][1]。

所有状态都被访问或者剪枝后,返回。


调试过程及实验结果

程序执行的结果:


源代码:

#include<cstdio>
#include <cstring>
#include <queue>//队列 
#define MAX 100
#define NoEdge -1
using namespace std;int n;
int arr[MAX][MAX];
int v[MAX];
int bestc;
int num = 0;class MinHeapNode{public: char name;public: int rcost,lcost; public: int cc,s;public: int* x;MinHeapNode(){num++;}bool operator<(const MinHeapNode& MH) const{return lcost > MH.lcost;}
};int BBTSP(){MinHeapNode E;int cc, rcost, MinSum, * MinOut, b;int i, j;MinSum = 0;MinOut = new int[n + 1];for (i = 1; i <= n; i++){MinOut[i] = NoEdge;for (j = 1; j <= n; j++)if (arr[i][j] != NoEdge && (arr[i][j] < MinOut[i] || MinOut[i] == NoEdge))MinOut[i] = arr[i][j];if (MinOut[i] == NoEdge)return NoEdge;MinSum += MinOut[i];}priority_queue<MinHeapNode> prioque;E.s = 0;E.cc = 0;E.rcost = MinSum;E.x = new int[n];for (i = 0; i < n; i++)E.x[i] = i + 1;bestc = NoEdge;//搜索排列空间树while (E.s < n - 1){//非叶节点if (E.s == n - 2){// 当前扩展节点是叶节点的父节点if (arr[E.x[n - 2]][E.x[n - 1]] != NoEdge && arr[E.x[n - 1]][1] != NoEdge &&(E.cc + arr[E.x[n - 2]][E.x[n - 1]] + arr[E.x[n - 1]][1] < bestc || bestc == NoEdge)){//费用更小的回路bestc = E.cc + arr[E.x[n - 2]][E.x[n - 1]] + arr[E.x[n - 1]][1];E.cc = bestc;E.lcost = bestc;E.s++;prioque.push(E);}else{delete[] E.x;      // 舍弃扩展结点}}else {// 产生当前扩展节点儿子节点for (i = E.s + 1; i < n; i++){MinHeapNode N;if (arr[E.x[E.s]][E.x[i]] != NoEdge){// E.x[E.s] 是当前要扩展的父节点,E.x[i] 是被遍历的子节点cc = E.cc + arr[E.x[E.s]][E.x[i]];       // 可行儿子节点rcost = E.rcost - MinOut[E.x[E.s]];b = cc + rcost;                          // 下界if (b < bestc || bestc == NoEdge)        // 子树可能含最优解,节点插入最小堆{N.s = E.s + 1; // 进入下一层N.cc = cc;N.lcost = b;N.rcost = rcost;N.x = new int[n];for (j = 0; j < n; j++)N.x[j] = E.x[j];N.x[E.s + 1] = E.x[i];N.x[i] = E.x[E.s + 1];prioque.push(N); // 加入优先队列}}}delete[] E.x;}if (prioque.empty())break;E = prioque.top();prioque.pop();}if (bestc == NoEdge)return NoEdge;for (i = 0; i < n; i++)v[i + 1] = E.x[i];while (prioque.size()){E = prioque.top();prioque.pop();delete[] E.x;}return bestc;
}int main(){printf("请输入城市数量及路径数量:");scanf("%d",&n);int k;memset(arr, NoEdge, sizeof(arr));scanf("%d",&k);printf("请输入各路径及其长度:");int p, q, len;for (int i = 1; i <= k; ++i){scanf("%d %d %d",&p,&q,&len);arr[p][q] = len;arr[q][p] = len;}int res = BBTSP();if (res == NoEdge){puts("无法形成回路");}else {printf("最短路径为:%d\n",res);for (int i = 1; i <= n; i++)printf("%d ",v[i]);printf("%d",v[1]);}
}

这篇关于旅行售货员问题(C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393304

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)