旅行售货员问题(C++)

2023-11-11 22:40
文章标签 c++ 问题 旅行 售货员

本文主要是介绍旅行售货员问题(C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编译环境:Dev-C++

分支界限法解旅行售货员问题的具体算法实现


旅行售货员问题描述:

        某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。他要选定一条从驻地出发,经过每个城市一次,最后回到驻地的路线,使总的路程(或总旅费)最小。

算法描述:

        路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括V中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。 旅行售货员问题的解空间可以组织成一棵排列树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图G中找出费用最小的周游路线。 

        解旅行售货员问题的优先队列式分支限界法用优先队列存储活结点表。活结点m在优先队列中的优先级定义为:  活结点m对应的子树费用下界lcost,lcost=cc+rcost,其中,cc为当前结点费用,rcost为当前顶点最小出边费用加上剩余所有顶点的最小出边费用和。

      创建一个最小堆,用于表示活结点优先队列。堆中每个结点的优先级是子树费用的下界lcost值。计算每个顶点i的最小出边费用并用minout[i]记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法结束。基于优先队列式分支限界的旅行售货员问题求解算法,采用限界函数lcost ,作为优先级,不断调整搜索方向,选择最有可能取得最优解的子树优先搜索;同时,根据限界函数lcost进行剪枝,剪掉不包含最优解的分。


算法步骤:

      ①状态A表示售货员没有经过任何路径。此时cc 和 rcost 都为0。以此为初始状态,加入优先队列(最小堆)。

      ②之后取出堆顶,此活节点成为扩展节点,扩展出多个儿子节点。检测所有儿子节点的lcost值,lcost = cc+rcost,其含义为至少需要花费lcost的费用,所以比较lcost和bestc的值。

      ③若lcost > bestc,则它所在的子树再也不会小于bestc,剪枝。

      ④若lcost < bestc,则说明它的子树有可能会得到最优解,因此此儿子节点进入优先队列。

      ⑤每次搜索到叶节点,更新bestc,bestc = cc + a[n-2][n-1]+a[n-1][1]。

所有状态都被访问或者剪枝后,返回。


调试过程及实验结果

程序执行的结果:


源代码:

#include<cstdio>
#include <cstring>
#include <queue>//队列 
#define MAX 100
#define NoEdge -1
using namespace std;int n;
int arr[MAX][MAX];
int v[MAX];
int bestc;
int num = 0;class MinHeapNode{public: char name;public: int rcost,lcost; public: int cc,s;public: int* x;MinHeapNode(){num++;}bool operator<(const MinHeapNode& MH) const{return lcost > MH.lcost;}
};int BBTSP(){MinHeapNode E;int cc, rcost, MinSum, * MinOut, b;int i, j;MinSum = 0;MinOut = new int[n + 1];for (i = 1; i <= n; i++){MinOut[i] = NoEdge;for (j = 1; j <= n; j++)if (arr[i][j] != NoEdge && (arr[i][j] < MinOut[i] || MinOut[i] == NoEdge))MinOut[i] = arr[i][j];if (MinOut[i] == NoEdge)return NoEdge;MinSum += MinOut[i];}priority_queue<MinHeapNode> prioque;E.s = 0;E.cc = 0;E.rcost = MinSum;E.x = new int[n];for (i = 0; i < n; i++)E.x[i] = i + 1;bestc = NoEdge;//搜索排列空间树while (E.s < n - 1){//非叶节点if (E.s == n - 2){// 当前扩展节点是叶节点的父节点if (arr[E.x[n - 2]][E.x[n - 1]] != NoEdge && arr[E.x[n - 1]][1] != NoEdge &&(E.cc + arr[E.x[n - 2]][E.x[n - 1]] + arr[E.x[n - 1]][1] < bestc || bestc == NoEdge)){//费用更小的回路bestc = E.cc + arr[E.x[n - 2]][E.x[n - 1]] + arr[E.x[n - 1]][1];E.cc = bestc;E.lcost = bestc;E.s++;prioque.push(E);}else{delete[] E.x;      // 舍弃扩展结点}}else {// 产生当前扩展节点儿子节点for (i = E.s + 1; i < n; i++){MinHeapNode N;if (arr[E.x[E.s]][E.x[i]] != NoEdge){// E.x[E.s] 是当前要扩展的父节点,E.x[i] 是被遍历的子节点cc = E.cc + arr[E.x[E.s]][E.x[i]];       // 可行儿子节点rcost = E.rcost - MinOut[E.x[E.s]];b = cc + rcost;                          // 下界if (b < bestc || bestc == NoEdge)        // 子树可能含最优解,节点插入最小堆{N.s = E.s + 1; // 进入下一层N.cc = cc;N.lcost = b;N.rcost = rcost;N.x = new int[n];for (j = 0; j < n; j++)N.x[j] = E.x[j];N.x[E.s + 1] = E.x[i];N.x[i] = E.x[E.s + 1];prioque.push(N); // 加入优先队列}}}delete[] E.x;}if (prioque.empty())break;E = prioque.top();prioque.pop();}if (bestc == NoEdge)return NoEdge;for (i = 0; i < n; i++)v[i + 1] = E.x[i];while (prioque.size()){E = prioque.top();prioque.pop();delete[] E.x;}return bestc;
}int main(){printf("请输入城市数量及路径数量:");scanf("%d",&n);int k;memset(arr, NoEdge, sizeof(arr));scanf("%d",&k);printf("请输入各路径及其长度:");int p, q, len;for (int i = 1; i <= k; ++i){scanf("%d %d %d",&p,&q,&len);arr[p][q] = len;arr[q][p] = len;}int res = BBTSP();if (res == NoEdge){puts("无法形成回路");}else {printf("最短路径为:%d\n",res);for (int i = 1; i <= n; i++)printf("%d ",v[i]);printf("%d",v[1]);}
}

这篇关于旅行售货员问题(C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393304

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修