java语言解决旅行售货员问题(分支限界法)

2023-11-11 22:40

本文主要是介绍java语言解决旅行售货员问题(分支限界法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、什么是旅行售货员问题

1.1基本介绍

2.问题描述

3.代码实现 


1、什么是旅行售货员问题

旅行售货员问题(travelling salesman problem)是一类组合最优化问题,设有一个售货员从城市1出发,到城市2,3,…,n去推销货物,最后回到城市1.假定任意两个城市i,j间的距离dij(dij=dji)是已知的,问他应沿着什么样的路线走,才能使走过的路线最短?容易看出,中国邮递员问题要求走遍所有“线”,而后者要求走遍所有“点”,旅行售货员问题就是在一个完全网络中,找出一个具有最小权的哈密顿圈,寻求旅行售货员问题的有效算法似乎是没有希望的,它属于NP完全类,一个可行的办法是首先求一个哈密顿圈,然后适当修改,以得到具较小权的另一个哈密顿圈,旅行售货员问题有着明显的实际意义,除售货员之外,邮局里负责到各个信箱取信的邮递员,以及去各个分局送邮件的汽车等都会类似地遇到这个问题,还有一些问题表面上似乎与之无关,而实质上却可以归结为旅行售货员问题求解,如计算机线路问题、无中间存储的工件加工问题等 [1]  。

1.1基本介绍

设有p个城镇,已知每两个城镇之间的距离,一个售货员从某一城镇出发巡回售货,问这个售货员应如何选择路线,能使每个城镇经过一次且仅一次,最后返回到出发地,而使总的行程最短?这个问题称为旅行售货员问题。容易看出,旅行售货员问题就是在一个赋权完全图中找一个具有最小权的Hamilton圈,我们称这种圈为最优Hamilton圈。

除旅行售货员问题之外,邮局中负责到各个信箱取信的邮递员,以及去各个分局送邮件的汽车等都会类似遇到这种问题,还有一些问题表面上似乎与之无关,而实质上却可以归结为旅行售货员问题来解决,既然这个问题有着如此广泛的应用,那么找一个求解最优Hamilton圈的有效算法就成为一件非常重要的事 [2]  

2.问题描述


某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。他要选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程( 或旅费)最小。各个城市之间可能是有向连通的、无向连通的、以及存在某个城市不连通的情况,你的程序应该能够处理所有可能的情况。如下图表示各个城市间无向连通。

 输入:
第一行为一个整数n(n<=10),表示城市的总个数。接下来是一个n*n的矩阵,用来表示城市间的连通情况以及花费,例如path[i][j]=len,len=-1表示从城市i到城市j没有通路,len>0表示从i到j的路程长度为len。对于上面图示的问题我们可以按照下面方式输入:

4
-1 30 6 4
30 -1 5 10
6 5 -1 20
4 10 20 -1

输出:25

3.代码实现 


import java.util.Scanner;
public class ts
{
public static void main(String args[])
{
Scanner s=new Scanner(System.in);
int n=0;//结点的个数
String line=s.nextLine();//读入n
n=Integer.parseInt(line);
a=new float[n][n];
int []vv=new int[n];for(int i=0;i<n;i++)
{
line=s.nextLine();
String []sArray=line.split(" ");
for(int j=0;j<sArray.length;j++)
{
a[i][j]=Integer.parseInt(sArray[j]);
}
}
System.out.println(bbTsp(vv));
}
static float [][]a;
private static class HeapNode implements Comparable
{
float lcost,//子树费用下界
cc,//当前费用
rcost;//X[s:n-1]中顶点最小出边费用和
int s;//根节点到当前结点的路径为X[0:s]
int []x;//需要进一步搜索的结点是x[s+1:n-1]
//HeapNode的构造函数
HeapNode(float lc,float ccc,float rc,int ss,int []xx)
{
lcost=lc;
cc=ccc;
s=ss;
x=xx;
}//HeapNode 构造函数
public int compareTo(Object x)
{
float xlc=((HeapNode)x).lcost;
if(lcost<xlc)
return -1;
if(lcost==xlc)
return 0;
return 1;
}
}
public static int  bbTsp(int []v)
{
int n=v.length;
MinHeap heap=new MinHeap(100);
float []minOut=new float[n];//minOut[i]是顶点i的最小出边费用
float minSum=0;//最小出边费用和
//计算最小出边费用和
for(int i=0;i<n;i++)
{
float min=Float.MAX_VALUE;
for(int j=0;j<n;j++)
{
if(a[i][j]!=-1&&a[i][j]<min)
min=a[i][j];//有回路
}//for j
if(min==Float.MAX_VALUE)
{
return -1;//无回路
}
minOut[i]=min;
minSum+=min;
}
int []x=new int[n];
for(int i=0;i<n;i++)
{
x[i]=i;
}
HeapNode enode=new HeapNode(0,0,minSum,0,x);
float bestc=Float.MAX_VALUE;
//搜索排列空间树
while(enode!=null&&enode.s<n-1)
{
//System.out.println(bestc);
x=enode.x;
if(enode.s==n-2)//叶子结点
{
if(a[x[n-2]][x[n-1]]!=-1&&
a[x[n-1]][1]!=-1||
bestc==Float.MAX_VALUE)//当前最优解还不存在的情况
{
bestc=enode.cc+a[x[n-2]][x[n-1]]+a[x[n-1]][0];
enode.cc=bestc;
enode.lcost=bestc;
enode.s++;
heap.put(enode);
}
}
else
{
for(int i=enode.s+1;i<n;i++)
{
if(a[x[enode.s]][x[i]]!=-1)
{
float cc=enode.cc+a[x[enode.s]][x[i]];
float rcost=enode.rcost-minOut[x[enode.s]];
float b=cc+rcost;
if(b<bestc)
{
int []xx=new int[n];
for(int j=0;j<n;j++)
xx[j]=x[j];
xx[enode.s+1]=x[i];
xx[i]=x[enode.s+1];
HeapNode node=new HeapNode(b,cc,rcost,enode.s+1,xx);
heap.put(node);
}
}
}
}
enode=(HeapNode)heap.removeMin();
}
for(int i=0;i<n;i++)
v[i]=x[i];
return (int)bestc;
}
public static class MinHeap
{
private HeapNode[] heapArray; // 堆容器
private int maxSize; // 堆的最大大小
private int currentSize=0; // 堆大小
//构造函数
public MinHeap(int _maxSize)
{
maxSize = _maxSize;
heapArray = new HeapNode[maxSize];
currentSize = 0;
}
//自上而下调整
public void filterDown(int start, int endOfHeap)
{
int i = start;
int j = 2 * i + 1; // j是i的左子女位置
HeapNode temp = heapArray[i];
while (j <= endOfHeap)
{ // 检查是否到最后位置
if (j < endOfHeap // 让j指向两子女中的小者
&& heapArray[j].cc > heapArray[j + 1].cc)
{
j++;
}
if (temp.cc <= heapArray[j].cc)
{ // 小则不做调整
break;
} else
{ // 否则小者上移,i,j下降
heapArray[i] = heapArray[j];
i = j;
j = 2 * j + 1;
}
}
heapArray[i] = temp;
}//filterDown//自下而上的调整:从结点start开始到0为止,自下向上比较,如果子女的值小于双亲结点的值则互相交换
public void filterUp(int start)
{
int j = start;
int i = (j - 1) / 2;
HeapNode temp = heapArray[j];while (j > 0)
{ // 沿双亲结点路径向上直达根节点
if (heapArray[i].cc <= temp.cc)
{// 双亲结点值小,不调整
break;
} else {// 双亲结点值大,调整
heapArray[j] = heapArray[i];
j = i;
i = (i - 1) / 2;
}
heapArray[j] = temp; // 回送
}
}//filterUp//插入结点
public void put(HeapNode node)
{
HeapNode newNode = node;
heapArray[currentSize] = newNode;
filterUp(currentSize);
currentSize++;
}
//删除堆中的最小值
public HeapNode removeMin()
{
HeapNode root = heapArray[0];
heapArray[0] = heapArray[currentSize - 1];
currentSize--;
filterDown(0, currentSize - 1);
return root;
}
}
}

 实例输入

这篇关于java语言解决旅行售货员问题(分支限界法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393300

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Spring MVC如何设置响应

《SpringMVC如何设置响应》本文介绍了如何在Spring框架中设置响应,并通过不同的注解返回静态页面、HTML片段和JSON数据,此外,还讲解了如何设置响应的状态码和Header... 目录1. 返回静态页面1.1 Spring 默认扫描路径1.2 @RestController2. 返回 html2