技术大停滞_检测和测试停滞的流– RxJava常见问题解答

2023-11-11 22:20

本文主要是介绍技术大停滞_检测和测试停滞的流– RxJava常见问题解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

技术大停滞

技术大停滞

假设您有一个流以不可预测的频率发布事件。 有时您可以预期每秒会有数十条消息,但是偶尔几秒钟都看不到任何事件。 如果流是通过Web套接字,SSE或任何其他网络协议传输的,则可能会出现问题。 静默时间过长(停顿)可以解释为网络问题。 因此,我们经常不时发送人造事件( ping ),以确保:

  • 客户还活着
  • 让客户知道我们还活着

举一个更具体的例子,假设我们有一个Flowable<String>流,它会产生一些事件。 如果没有事件超过一秒钟,我们应该发送一个占位符"PING"消息。 当寂静时间更长时,应该每秒发出一个"PING"消息。 我们如何在RxJava中实现这样的要求? 最明显但不正确的解决方案是将原始流与ping合并:

Flowable<String> events = //...
Flowable<String> pings = Flowable.interval(1, SECONDS).map(x -> "PING");Flowable<String> eventsWithPings = events.mergeWith(pings);

mergeWith()运算符至关重要:它接受真正的events ,并将它们与恒定的ping流合并。 当然,当不存在真正的事件时,将显示"PING"消息。 不幸的是,它们与原始流完全无关。 这意味着即使有很多正常事件,我们也会继续发送ping命令。 而且,当静默开始时,我们不会在一秒钟后精确发送"PING" 。 如果您对这种机制感到满意,则可以在此处停止阅读。

一种更复杂的方法需要发现持续超过1秒的静音。 我们可以使用timeout()运算符。 不幸的是,它会产生TimeoutException并从上游退订-行为过于激进。 我们只想收到某种通知。 事实证明,可以使用debounce()运算符。 通常,此操作员会推迟新事件的发出,以防万一有新事件出现,而又覆盖了旧事件。 所以,如果我说:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);

这意味着delayed流仅在1秒内跟随其他事件的情况下才会发出事件。 如果events流使产生事件的速度足够快,则从技术上讲, delayed可能永远不会发出任何东西。 我们将使用delayed流通过以下方式发现沉默:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.map(ev -> "PING");
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

请记住, mergeWith()与它的static merge()对应项之间没有区别。 所以我们到了某个地方。 如果流繁忙,则delayed流将永远不会收到任何事件,因此不会发送"PING"消息。 但是,当原始流不发送任何事件超过1秒时, delayed接收到最后一次看到的事件,将其忽略并转换为"PING" 。 聪明,但坏了。 此实现仅在发现停顿之后才发送一个"PING" ,而不是每秒发送一次定期ping。 很容易修复! 除了将最后一次看到的事件转换为单个"PING"我们还可以将其转换为周期性的ping序列:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.flatMap(x -> Flowable.interval(0, 1, SECONDS).map(e -> "PING"));
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

您能看到缺陷在哪里吗? 每当原始流中出现一点沉默时,我们就会每秒发出一次ping 。 但是,一旦出现真正的事件,我们应该停止这样做。 我们没有。 上游的每个停顿都会导致新的无限ping流出现在最终合并的流中。 我们必须以某种方式告诉pings流,因为原始流发出了真正的事件,所以它应该停止发出ping 。 猜猜是什么,有takeUntil()运算符可以做到这一点!

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.flatMap(x -> Flowable.interval(0, 1, SECONDS).map(e -> "PING").takeUntil(events));
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

花一点时间完全掌握上面的代码片段。 每当原始流上超过1秒没有任何React时, delayed流就会发出一个事件。 pings流发射的序列"PING"每秒从发射每个事件的事件delayed 。 但是,一旦事件出现在events流上,便会终止pings流。 您甚至可以将所有这些定义为单个表达式:

Flowable<String> events = //...
Flowable<String> eventsWithPings = events.mergeWith(events.debounce(1, SECONDS).flatMap(x1 -> Flowable.interval(0, 1, SECONDS).map(e -> "PING").takeUntil(events)));

可测性

好的,我们已经编写了所有这些内容,但是我们应该如何测试事件驱动代码的这个三层嵌套的Blob? 我们如何确保ping在正确的时间出现并在静音结束后停止? 如何模拟各种与时间相关的场景? RxJava具有许多杀手级功能,但是测试时间流逝可能是最大的功能。 首先,让我们的ping代码更具可测试性和通用性:

<T> Flowable<T> withPings(Flowable<T> events, Scheduler clock, T ping) {return events.mergeWith(events.debounce(1, SECONDS, clock).flatMap(x1 -> Flowable.interval(0, 1, SECONDS, clock).map(e -> ping).takeUntil(events)));}

此实用程序方法采用任意的T流并添加ping ,以防该流在较长时间内不产生任何事件。 我们在测试中像这样使用它:

PublishProcessor<String> events = PublishProcessor.create();
TestScheduler clock = new TestScheduler();
Flowable<String> eventsWithPings = withPings(events, clock, "PING");

哦,男孩, PublishProcessorTestSchedulerPublishProcessor是一个有趣的类,它是一个亚型Flowable (所以我们可以使用它作为一个普通的流)。 另一方面,我们可以使用其onNext()方法强制发出事件:

events.onNext("A");

如果有人收听events流,他将立即收到"A"事件。 这clock是怎么回事? RxJava中以任何方式处理时间的每个运算符(例如debounce debounce()interval()timeout()window() )都可以采用可选的Scheduler参数。 它充当时间的外部来源。 特殊的TestScheduler是我们完全控制的人为时间来源。 也就是说,只要我们不显式调用advanceTimeBy()时间就保持静止:

clock.advanceTimeBy(999, MILLISECONDS);

999毫秒不是巧合。 Ping在1秒钟后开始精确显示,因此在999毫秒后将不可见。 现在是时候揭示完整的测试用例了:

@Test
public void shouldAddPings() throws Exception {PublishProcessor<String> events = PublishProcessor.create();final TestScheduler clock = new TestScheduler();final Flowable<String> eventsWithPings = withPings(events, clock, "PING");final TestSubscriber<String> test = eventsWithPings.test();events.onNext("A");test.assertValues("A");clock.advanceTimeBy(999, MILLISECONDS);events.onNext("B");test.assertValues("A", "B");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING");events.onNext("C");test.assertValues("A", "B", "PING", "C");clock.advanceTimeBy(1000, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING");events.onNext("D");test.assertValues("A", "B", "PING", "C", "PING", "PING", "D");clock.advanceTimeBy(999, MILLISECONDS);events.onNext("E");test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E", "PING");clock.advanceTimeBy(3_000, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E", "PING", "PING", "PING", "PING");
}

看起来像一堵墙,但这实际上是我们逻辑的完整测试方案。 它可以确保在1000毫秒后准确地执行ping操作;如果寂静时间很长,则会重复进行ping操作;当出现真正的事件时, ping操作会变得很慢。 但最重要的部分是:该测试是100%可预测的并且非常快。 没有Awaitility ,忙等待,轮询,间歇性测试失败和缓慢。 我们完全控制的人工时钟可确保所有这些组合流均按预期工作。

翻译自: https://www.javacodegeeks.com/2017/09/detecting-testing-stalled-streams-rxjava-faq.html

技术大停滞

这篇关于技术大停滞_检测和测试停滞的流– RxJava常见问题解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393213

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分