技术大停滞_检测和测试停滞的流– RxJava常见问题解答

2023-11-11 22:20

本文主要是介绍技术大停滞_检测和测试停滞的流– RxJava常见问题解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

技术大停滞

技术大停滞

假设您有一个流以不可预测的频率发布事件。 有时您可以预期每秒会有数十条消息,但是偶尔几秒钟都看不到任何事件。 如果流是通过Web套接字,SSE或任何其他网络协议传输的,则可能会出现问题。 静默时间过长(停顿)可以解释为网络问题。 因此,我们经常不时发送人造事件( ping ),以确保:

  • 客户还活着
  • 让客户知道我们还活着

举一个更具体的例子,假设我们有一个Flowable<String>流,它会产生一些事件。 如果没有事件超过一秒钟,我们应该发送一个占位符"PING"消息。 当寂静时间更长时,应该每秒发出一个"PING"消息。 我们如何在RxJava中实现这样的要求? 最明显但不正确的解决方案是将原始流与ping合并:

Flowable<String> events = //...
Flowable<String> pings = Flowable.interval(1, SECONDS).map(x -> "PING");Flowable<String> eventsWithPings = events.mergeWith(pings);

mergeWith()运算符至关重要:它接受真正的events ,并将它们与恒定的ping流合并。 当然,当不存在真正的事件时,将显示"PING"消息。 不幸的是,它们与原始流完全无关。 这意味着即使有很多正常事件,我们也会继续发送ping命令。 而且,当静默开始时,我们不会在一秒钟后精确发送"PING" 。 如果您对这种机制感到满意,则可以在此处停止阅读。

一种更复杂的方法需要发现持续超过1秒的静音。 我们可以使用timeout()运算符。 不幸的是,它会产生TimeoutException并从上游退订-行为过于激进。 我们只想收到某种通知。 事实证明,可以使用debounce()运算符。 通常,此操作员会推迟新事件的发出,以防万一有新事件出现,而又覆盖了旧事件。 所以,如果我说:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);

这意味着delayed流仅在1秒内跟随其他事件的情况下才会发出事件。 如果events流使产生事件的速度足够快,则从技术上讲, delayed可能永远不会发出任何东西。 我们将使用delayed流通过以下方式发现沉默:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.map(ev -> "PING");
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

请记住, mergeWith()与它的static merge()对应项之间没有区别。 所以我们到了某个地方。 如果流繁忙,则delayed流将永远不会收到任何事件,因此不会发送"PING"消息。 但是,当原始流不发送任何事件超过1秒时, delayed接收到最后一次看到的事件,将其忽略并转换为"PING" 。 聪明,但坏了。 此实现仅在发现停顿之后才发送一个"PING" ,而不是每秒发送一次定期ping。 很容易修复! 除了将最后一次看到的事件转换为单个"PING"我们还可以将其转换为周期性的ping序列:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.flatMap(x -> Flowable.interval(0, 1, SECONDS).map(e -> "PING"));
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

您能看到缺陷在哪里吗? 每当原始流中出现一点沉默时,我们就会每秒发出一次ping 。 但是,一旦出现真正的事件,我们应该停止这样做。 我们没有。 上游的每个停顿都会导致新的无限ping流出现在最终合并的流中。 我们必须以某种方式告诉pings流,因为原始流发出了真正的事件,所以它应该停止发出ping 。 猜猜是什么,有takeUntil()运算符可以做到这一点!

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.flatMap(x -> Flowable.interval(0, 1, SECONDS).map(e -> "PING").takeUntil(events));
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

花一点时间完全掌握上面的代码片段。 每当原始流上超过1秒没有任何React时, delayed流就会发出一个事件。 pings流发射的序列"PING"每秒从发射每个事件的事件delayed 。 但是,一旦事件出现在events流上,便会终止pings流。 您甚至可以将所有这些定义为单个表达式:

Flowable<String> events = //...
Flowable<String> eventsWithPings = events.mergeWith(events.debounce(1, SECONDS).flatMap(x1 -> Flowable.interval(0, 1, SECONDS).map(e -> "PING").takeUntil(events)));

可测性

好的,我们已经编写了所有这些内容,但是我们应该如何测试事件驱动代码的这个三层嵌套的Blob? 我们如何确保ping在正确的时间出现并在静音结束后停止? 如何模拟各种与时间相关的场景? RxJava具有许多杀手级功能,但是测试时间流逝可能是最大的功能。 首先,让我们的ping代码更具可测试性和通用性:

<T> Flowable<T> withPings(Flowable<T> events, Scheduler clock, T ping) {return events.mergeWith(events.debounce(1, SECONDS, clock).flatMap(x1 -> Flowable.interval(0, 1, SECONDS, clock).map(e -> ping).takeUntil(events)));}

此实用程序方法采用任意的T流并添加ping ,以防该流在较长时间内不产生任何事件。 我们在测试中像这样使用它:

PublishProcessor<String> events = PublishProcessor.create();
TestScheduler clock = new TestScheduler();
Flowable<String> eventsWithPings = withPings(events, clock, "PING");

哦,男孩, PublishProcessorTestSchedulerPublishProcessor是一个有趣的类,它是一个亚型Flowable (所以我们可以使用它作为一个普通的流)。 另一方面,我们可以使用其onNext()方法强制发出事件:

events.onNext("A");

如果有人收听events流,他将立即收到"A"事件。 这clock是怎么回事? RxJava中以任何方式处理时间的每个运算符(例如debounce debounce()interval()timeout()window() )都可以采用可选的Scheduler参数。 它充当时间的外部来源。 特殊的TestScheduler是我们完全控制的人为时间来源。 也就是说,只要我们不显式调用advanceTimeBy()时间就保持静止:

clock.advanceTimeBy(999, MILLISECONDS);

999毫秒不是巧合。 Ping在1秒钟后开始精确显示,因此在999毫秒后将不可见。 现在是时候揭示完整的测试用例了:

@Test
public void shouldAddPings() throws Exception {PublishProcessor<String> events = PublishProcessor.create();final TestScheduler clock = new TestScheduler();final Flowable<String> eventsWithPings = withPings(events, clock, "PING");final TestSubscriber<String> test = eventsWithPings.test();events.onNext("A");test.assertValues("A");clock.advanceTimeBy(999, MILLISECONDS);events.onNext("B");test.assertValues("A", "B");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING");events.onNext("C");test.assertValues("A", "B", "PING", "C");clock.advanceTimeBy(1000, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING");events.onNext("D");test.assertValues("A", "B", "PING", "C", "PING", "PING", "D");clock.advanceTimeBy(999, MILLISECONDS);events.onNext("E");test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E", "PING");clock.advanceTimeBy(3_000, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E", "PING", "PING", "PING", "PING");
}

看起来像一堵墙,但这实际上是我们逻辑的完整测试方案。 它可以确保在1000毫秒后准确地执行ping操作;如果寂静时间很长,则会重复进行ping操作;当出现真正的事件时, ping操作会变得很慢。 但最重要的部分是:该测试是100%可预测的并且非常快。 没有Awaitility ,忙等待,轮询,间歇性测试失败和缓慢。 我们完全控制的人工时钟可确保所有这些组合流均按预期工作。

翻译自: https://www.javacodegeeks.com/2017/09/detecting-testing-stalled-streams-rxjava-faq.html

技术大停滞

这篇关于技术大停滞_检测和测试停滞的流– RxJava常见问题解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393213

相关文章

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.