技术大停滞_检测和测试停滞的流– RxJava常见问题解答

2023-11-11 22:20

本文主要是介绍技术大停滞_检测和测试停滞的流– RxJava常见问题解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

技术大停滞

技术大停滞

假设您有一个流以不可预测的频率发布事件。 有时您可以预期每秒会有数十条消息,但是偶尔几秒钟都看不到任何事件。 如果流是通过Web套接字,SSE或任何其他网络协议传输的,则可能会出现问题。 静默时间过长(停顿)可以解释为网络问题。 因此,我们经常不时发送人造事件( ping ),以确保:

  • 客户还活着
  • 让客户知道我们还活着

举一个更具体的例子,假设我们有一个Flowable<String>流,它会产生一些事件。 如果没有事件超过一秒钟,我们应该发送一个占位符"PING"消息。 当寂静时间更长时,应该每秒发出一个"PING"消息。 我们如何在RxJava中实现这样的要求? 最明显但不正确的解决方案是将原始流与ping合并:

Flowable<String> events = //...
Flowable<String> pings = Flowable.interval(1, SECONDS).map(x -> "PING");Flowable<String> eventsWithPings = events.mergeWith(pings);

mergeWith()运算符至关重要:它接受真正的events ,并将它们与恒定的ping流合并。 当然,当不存在真正的事件时,将显示"PING"消息。 不幸的是,它们与原始流完全无关。 这意味着即使有很多正常事件,我们也会继续发送ping命令。 而且,当静默开始时,我们不会在一秒钟后精确发送"PING" 。 如果您对这种机制感到满意,则可以在此处停止阅读。

一种更复杂的方法需要发现持续超过1秒的静音。 我们可以使用timeout()运算符。 不幸的是,它会产生TimeoutException并从上游退订-行为过于激进。 我们只想收到某种通知。 事实证明,可以使用debounce()运算符。 通常,此操作员会推迟新事件的发出,以防万一有新事件出现,而又覆盖了旧事件。 所以,如果我说:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);

这意味着delayed流仅在1秒内跟随其他事件的情况下才会发出事件。 如果events流使产生事件的速度足够快,则从技术上讲, delayed可能永远不会发出任何东西。 我们将使用delayed流通过以下方式发现沉默:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.map(ev -> "PING");
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

请记住, mergeWith()与它的static merge()对应项之间没有区别。 所以我们到了某个地方。 如果流繁忙,则delayed流将永远不会收到任何事件,因此不会发送"PING"消息。 但是,当原始流不发送任何事件超过1秒时, delayed接收到最后一次看到的事件,将其忽略并转换为"PING" 。 聪明,但坏了。 此实现仅在发现停顿之后才发送一个"PING" ,而不是每秒发送一次定期ping。 很容易修复! 除了将最后一次看到的事件转换为单个"PING"我们还可以将其转换为周期性的ping序列:

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.flatMap(x -> Flowable.interval(0, 1, SECONDS).map(e -> "PING"));
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

您能看到缺陷在哪里吗? 每当原始流中出现一点沉默时,我们就会每秒发出一次ping 。 但是,一旦出现真正的事件,我们应该停止这样做。 我们没有。 上游的每个停顿都会导致新的无限ping流出现在最终合并的流中。 我们必须以某种方式告诉pings流,因为原始流发出了真正的事件,所以它应该停止发出ping 。 猜猜是什么,有takeUntil()运算符可以做到这一点!

Flowable<String> events = //...
Flowable<String> delayed = events.debounce(1, SECONDS);
Flowable<String> pings = delayed.flatMap(x -> Flowable.interval(0, 1, SECONDS).map(e -> "PING").takeUntil(events));
Flowable<String> eventsWithPings = Flowable.merge(events, pings);

花一点时间完全掌握上面的代码片段。 每当原始流上超过1秒没有任何React时, delayed流就会发出一个事件。 pings流发射的序列"PING"每秒从发射每个事件的事件delayed 。 但是,一旦事件出现在events流上,便会终止pings流。 您甚至可以将所有这些定义为单个表达式:

Flowable<String> events = //...
Flowable<String> eventsWithPings = events.mergeWith(events.debounce(1, SECONDS).flatMap(x1 -> Flowable.interval(0, 1, SECONDS).map(e -> "PING").takeUntil(events)));

可测性

好的,我们已经编写了所有这些内容,但是我们应该如何测试事件驱动代码的这个三层嵌套的Blob? 我们如何确保ping在正确的时间出现并在静音结束后停止? 如何模拟各种与时间相关的场景? RxJava具有许多杀手级功能,但是测试时间流逝可能是最大的功能。 首先,让我们的ping代码更具可测试性和通用性:

<T> Flowable<T> withPings(Flowable<T> events, Scheduler clock, T ping) {return events.mergeWith(events.debounce(1, SECONDS, clock).flatMap(x1 -> Flowable.interval(0, 1, SECONDS, clock).map(e -> ping).takeUntil(events)));}

此实用程序方法采用任意的T流并添加ping ,以防该流在较长时间内不产生任何事件。 我们在测试中像这样使用它:

PublishProcessor<String> events = PublishProcessor.create();
TestScheduler clock = new TestScheduler();
Flowable<String> eventsWithPings = withPings(events, clock, "PING");

哦,男孩, PublishProcessorTestSchedulerPublishProcessor是一个有趣的类,它是一个亚型Flowable (所以我们可以使用它作为一个普通的流)。 另一方面,我们可以使用其onNext()方法强制发出事件:

events.onNext("A");

如果有人收听events流,他将立即收到"A"事件。 这clock是怎么回事? RxJava中以任何方式处理时间的每个运算符(例如debounce debounce()interval()timeout()window() )都可以采用可选的Scheduler参数。 它充当时间的外部来源。 特殊的TestScheduler是我们完全控制的人为时间来源。 也就是说,只要我们不显式调用advanceTimeBy()时间就保持静止:

clock.advanceTimeBy(999, MILLISECONDS);

999毫秒不是巧合。 Ping在1秒钟后开始精确显示,因此在999毫秒后将不可见。 现在是时候揭示完整的测试用例了:

@Test
public void shouldAddPings() throws Exception {PublishProcessor<String> events = PublishProcessor.create();final TestScheduler clock = new TestScheduler();final Flowable<String> eventsWithPings = withPings(events, clock, "PING");final TestSubscriber<String> test = eventsWithPings.test();events.onNext("A");test.assertValues("A");clock.advanceTimeBy(999, MILLISECONDS);events.onNext("B");test.assertValues("A", "B");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING");events.onNext("C");test.assertValues("A", "B", "PING", "C");clock.advanceTimeBy(1000, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING");events.onNext("D");test.assertValues("A", "B", "PING", "C", "PING", "PING", "D");clock.advanceTimeBy(999, MILLISECONDS);events.onNext("E");test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E");clock.advanceTimeBy(999, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E");clock.advanceTimeBy(1, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E", "PING");clock.advanceTimeBy(3_000, MILLISECONDS);test.assertValues("A", "B", "PING", "C", "PING", "PING", "D", "E", "PING", "PING", "PING", "PING");
}

看起来像一堵墙,但这实际上是我们逻辑的完整测试方案。 它可以确保在1000毫秒后准确地执行ping操作;如果寂静时间很长,则会重复进行ping操作;当出现真正的事件时, ping操作会变得很慢。 但最重要的部分是:该测试是100%可预测的并且非常快。 没有Awaitility ,忙等待,轮询,间歇性测试失败和缓慢。 我们完全控制的人工时钟可确保所有这些组合流均按预期工作。

翻译自: https://www.javacodegeeks.com/2017/09/detecting-testing-stalled-streams-rxjava-faq.html

技术大停滞

这篇关于技术大停滞_检测和测试停滞的流– RxJava常见问题解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393213

相关文章

java如何解压zip压缩包

《java如何解压zip压缩包》:本文主要介绍java如何解压zip压缩包问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解压zip压缩包实例代码结果如下总结java解压zip压缩包坐在旁边的小伙伴问我怎么用 java 将服务器上的压缩文件解压出来,

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分