【记录】CALIPSO Lidar Level 1B产品介绍

2023-11-11 15:20

本文主要是介绍【记录】CALIPSO Lidar Level 1B产品介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 3.01, 3.02, 3.30

Attenuated Backscatter Profiles

Total Attenuated Backscatter 532

Perpendicular Attenuated Backscatter 532

Attenuated Backscatter 1064

Calibration Coefficients and Uncertainties

Column Reflectance

Geolocation and Altitude Registration

Latitude

Longitude

Lidar Data Altitude

Number Bins Shift

Surface Altitude Shift

Orbit Number

Path Number

Meteorological Data

Time Parameters

Profile Identification

Ancillary Data

Day Night Flag

IGBP Surface Type

Land Water Mask

NSIDC Surface Type

Surface Elevation

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 2.01, 2.02


CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 3.01, 3.02, 3.30

CALIOP_L1ProfileProducts_3-01-v02.pdf

Attenuated Backscatter Profiles

Total Attenuated Backscatter 532

The total attenuated backscatter at 532 nm,β’532n Section 6.2.2 of the Lidar Level I ATBD (PDF),是主要的激光雷达一级数据产品之一。β’532是是532nm体积后向散射系数和532nm处的双向光学透射的乘积。Lidar Level I ATBD (PDF)第6节详细描述了来自两个组成偏振分量的532nm总衰减后向散射的构造。衰减的反向散射剖面是从校准的(除以校准常数)、距离校正的、激光能量归一化的、基线减去激光雷达返回信号中得到的。

532nm衰减后向散射系数被记录在每个激光脉冲的对应的583个元素的阵列中,对应于由激光雷达数据高度字段定义的恒定高度网格(元数据中Lidar Data Altitudes字段中记录)。(https://blog.csdn.net/wokaowokaowokao12345/article/details/79790675)

为了减少下行链路数据量,对不同的高度范围使用不同的水平和垂直分辨率,如下表所示。

The total attenuated backscatter at 532 nm, β'532 in Section 6.2.2 of the Lidar Level I ATBD (PDF), is one of the primary lidar Level 1 data products. β'532 is the product of the 532 nm volume backscatter coefficient and the two-way optical transmission at 532 nm from the lidar to the sample volume. The construction of the 532 nm total attenuated backscatter from the two constituent polarization components is described in detail in Section 6 of the Lidar Level I ATBD (PDF). The attenuated backscatter profiles are derived from the calibrated (divided by calibration constant), range-corrected, laser energy normalized, baseline subtracted lidar return signal.

The 532 nm attenuated backscatter coefficients are reported for each laser pulse as an array of 583 elements that have been registered to a constant altitude grid defined by the Lidar Data Altitude field.

Note that to reduce the downlink data volume, an on-board averaging scheme is applied using different horizontal and vertical resolutions for different altitude regimes, as shown in the following table.

Uncertainties for the attenuated backscatter are not explicitly reported in the CALIOP Level 1 data products to save data volume, which would otherwise approximately double the Level 1 data volume. If needed, users can compute random errors for the attenuated backscatter products as described in Uncertainties for Attenuated Backscatter (PDF). IDL code for computing the attenuated backscatter uncertainties is contained in IDL Code for Uncertainty Calculations (PDF).

Perpendicular Attenuated Backscatter 532

532nm总衰减后向散射的垂直分量。垂直通道532nm衰减后向散射的轮廓以与532nm总后向散射的轮廓相同的方式记录。反向散射的平行分量的轮廓可以通过从总量中简单地减去垂直分量来获得。

This field reports the perpendicular component of the 532 nm total attenuated backscatter, as described in section 6 of the CALIPSO Lidar Level I ATBD (PDF). Profiles of the perpendicular channel 532 nm attenuated backscatter are reported in the same manner as are profiles of the 532 nm total backscatter. Profiles of the parallel component of the backscatter can be obtained by simple subtraction of the perpendicular component from the total.

Attenuated Backscatter 1064

The attenuated backscatter at 1064 nm, β'1064, is computed according to equation 7.23 in section 7.2 of the Lidar Level I ATBD (PDF). Like β'532, β'1064 is one of the primary lidar Level 1 data products. β'1064 is the product of the 1064 nm volume backscatter coefficient and the two-way optical transmission at 1064 nm from the lidar to the sample volume. Profiles of the 1064 nm attenuated backscatter are reported in the same manner as are profiles of the 532 nm total backscatter. However, the first 34 bins of each profile contain fill values (-9999), because no 1064 nm data is downlinked from the 30.1 - 40 km altitude range.

Calibration Coefficients and Uncertainties

Column Reflectance

Geolocation and Altitude Registration

Latitude

Geodetic latitude, in degrees, of the laser footprint on the Earth's surface.

Longitude

Longitude, in degrees, of the laser footprint on the Earth's surface.

Lidar Data Altitude

这是一个HDF元数据字段,定义激光雷达1级剖面产品注册到的583个距离仓的高度(请参考表1:下行链路数据的不同高度范围的距离分辨率)。

This is an HDF metadata field that defines the altitudes of the 583 range bins (refer to Table 1: Range Resolutions of Different Altitude Ranges for Downlinked Data) to which lidar Level 1 profile products are registered.

Number Bins Shift

Number bins shift contains the number of 30 meter bins the profile specific 30 meter array elements are shifted to match the lowest altitude bin of the fixed 30 meter altitude array. Profile specific altitude arrays are computed as a function of the actual spacecraft offnadir angle, which varies slightly from the commanded spacecraft off-nadir angle. The fixed altitude array is computed using the commanded spacecraft off-nadir angle (0.3 or 3.0 degrees). The profile specific array elements may be shifted up or down.

Surface Altitude Shift

Surface altitude shift contains the altitude difference between the profile specific 30 meter altitude array and the fixed 30 meter altitude array at the array element that includes mean sea level. Profile specific altitude arrays are computed as a function of the actual spacecraft off-nadir angle, which varies slightly from the commanded spacecraft off-nadir angle. The fixed altitude array is computed using the commanded spacecraft off-nadir angle (0.3 or 3.0 degrees). The units are in kilometers and the values may be positive or negative. The difference is calculated as: Surface_Altitude_Shift = altitude (profile specific 30 meter mean sea level bin) - altitude (fixed 30 meter mean sea level bin).

Orbit Number

Orbit Number consists of three HDF metadata fields that define the number of revolutions by the CALIPSO spacecraft around the Earth and is incremented as the spacecraft passes the equator at the ascending node. To maintain consistency between the CALIPSO and CloudSat orbit parameters, the Orbit Number is keyed to the Cloudsat orbit 2121 at 23:00:47 on 2006/09/20. Because the CALIPSO data granules are organized according to day and night conditions, day/night boundaries do not coincide with transition points for defining orbit number. As such, three parameters are needed to describe the orbit number for each granule as:

  • Orbit Number at Granule Start: orbit number at the granule start time
  • Orbit Number at Granule End: orbit number at the granule stop time
  • Orbit Number Change Time: time at which the orbit number changes in the granule

Path Number

Orbit Number Path Number consists of three HDF metadata fields that define an index ranging from 1-233 that references orbits to the Worldwide Reference System (WRS). This global grid system was developed to support scene identification for LandSat imagery. Since the A-Train is maintained to the WRS grid within +/- 10 km, the Path Number provides a convenient index to support data searches, instead of having to define complex latitude and longitude regions along the orbit track. The Path Number is incremented after the maximum latitude in the orbit is realized and changes by a value of 16 between successive orbits. Because the CALIPSO data granules are organized according to day and night conditions, day/night boundaries do not coincide with transition points for defining path number. As such, three parameters are needed to describe the path number for each granule as:

  • Path Number at Granule Start: path number at the granule start time
  • Path Number at Granule End: path number at the granule stop time
  • Path Number Change Time: time at which the path number changes in the granule

Meteorological Data

Time Parameters

Profile Identification

Ancillary Data

Day Night Flag

This field indicates the lighting conditions at an altitude of ~24 km above mean sea level;

0 = day,

1 = night.

IGBP Surface Type

International Geosphere/Biosphere Programme (IGBP) classification of the surface type at the laser footprint. The IGBP surface types reported by CALIPSO are the same as those used in the CERES/SARB surface map.

Land Water Mask

This is an 8-bit integer indicating the surface type at the laser footprint, with

  • 0 = shallow ocean;
  • 1 = land;
  • 2 = coastlines;
  • 3 = shallow inland water;
  • 4 = intermittent water;
  • 5 = deep inland water;
  • 6 = continental ocean;
  • 7 = deep ocean.

NSIDC Surface Type

Snow and ice coverage for the surface at the laser footprint; data obtained from the National Snow and Ice Data Center (NSIDC).

Surface Elevation

这是从GTOPO30数字高程图(DEM)获得的激光足迹的表面高程,以高于当地平均海平面的公里为单位。

This is the surface elevation at the laser footprint, in kilometers above local mean sea level, obtained from the GTOPO30 digital elevation map (DEM).

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 2.01, 2.02

CALIOP_L1ProfileProducts_2.01.pdf

这篇关于【记录】CALIPSO Lidar Level 1B产品介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390988

相关文章

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

统一返回JsonResult踩坑的记录

《统一返回JsonResult踩坑的记录》:本文主要介绍统一返回JsonResult踩坑的记录,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录统一返回jsonResult踩坑定义了一个统一返回类在使用时,JsonResult没有get/set方法时响应总结统一返回

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和