【记录】CALIPSO Lidar Level 1B产品介绍

2023-11-11 15:20

本文主要是介绍【记录】CALIPSO Lidar Level 1B产品介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 3.01, 3.02, 3.30

Attenuated Backscatter Profiles

Total Attenuated Backscatter 532

Perpendicular Attenuated Backscatter 532

Attenuated Backscatter 1064

Calibration Coefficients and Uncertainties

Column Reflectance

Geolocation and Altitude Registration

Latitude

Longitude

Lidar Data Altitude

Number Bins Shift

Surface Altitude Shift

Orbit Number

Path Number

Meteorological Data

Time Parameters

Profile Identification

Ancillary Data

Day Night Flag

IGBP Surface Type

Land Water Mask

NSIDC Surface Type

Surface Elevation

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 2.01, 2.02


CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 3.01, 3.02, 3.30

CALIOP_L1ProfileProducts_3-01-v02.pdf

Attenuated Backscatter Profiles

Total Attenuated Backscatter 532

The total attenuated backscatter at 532 nm,β’532n Section 6.2.2 of the Lidar Level I ATBD (PDF),是主要的激光雷达一级数据产品之一。β’532是是532nm体积后向散射系数和532nm处的双向光学透射的乘积。Lidar Level I ATBD (PDF)第6节详细描述了来自两个组成偏振分量的532nm总衰减后向散射的构造。衰减的反向散射剖面是从校准的(除以校准常数)、距离校正的、激光能量归一化的、基线减去激光雷达返回信号中得到的。

532nm衰减后向散射系数被记录在每个激光脉冲的对应的583个元素的阵列中,对应于由激光雷达数据高度字段定义的恒定高度网格(元数据中Lidar Data Altitudes字段中记录)。(https://blog.csdn.net/wokaowokaowokao12345/article/details/79790675)

为了减少下行链路数据量,对不同的高度范围使用不同的水平和垂直分辨率,如下表所示。

The total attenuated backscatter at 532 nm, β'532 in Section 6.2.2 of the Lidar Level I ATBD (PDF), is one of the primary lidar Level 1 data products. β'532 is the product of the 532 nm volume backscatter coefficient and the two-way optical transmission at 532 nm from the lidar to the sample volume. The construction of the 532 nm total attenuated backscatter from the two constituent polarization components is described in detail in Section 6 of the Lidar Level I ATBD (PDF). The attenuated backscatter profiles are derived from the calibrated (divided by calibration constant), range-corrected, laser energy normalized, baseline subtracted lidar return signal.

The 532 nm attenuated backscatter coefficients are reported for each laser pulse as an array of 583 elements that have been registered to a constant altitude grid defined by the Lidar Data Altitude field.

Note that to reduce the downlink data volume, an on-board averaging scheme is applied using different horizontal and vertical resolutions for different altitude regimes, as shown in the following table.

Uncertainties for the attenuated backscatter are not explicitly reported in the CALIOP Level 1 data products to save data volume, which would otherwise approximately double the Level 1 data volume. If needed, users can compute random errors for the attenuated backscatter products as described in Uncertainties for Attenuated Backscatter (PDF). IDL code for computing the attenuated backscatter uncertainties is contained in IDL Code for Uncertainty Calculations (PDF).

Perpendicular Attenuated Backscatter 532

532nm总衰减后向散射的垂直分量。垂直通道532nm衰减后向散射的轮廓以与532nm总后向散射的轮廓相同的方式记录。反向散射的平行分量的轮廓可以通过从总量中简单地减去垂直分量来获得。

This field reports the perpendicular component of the 532 nm total attenuated backscatter, as described in section 6 of the CALIPSO Lidar Level I ATBD (PDF). Profiles of the perpendicular channel 532 nm attenuated backscatter are reported in the same manner as are profiles of the 532 nm total backscatter. Profiles of the parallel component of the backscatter can be obtained by simple subtraction of the perpendicular component from the total.

Attenuated Backscatter 1064

The attenuated backscatter at 1064 nm, β'1064, is computed according to equation 7.23 in section 7.2 of the Lidar Level I ATBD (PDF). Like β'532, β'1064 is one of the primary lidar Level 1 data products. β'1064 is the product of the 1064 nm volume backscatter coefficient and the two-way optical transmission at 1064 nm from the lidar to the sample volume. Profiles of the 1064 nm attenuated backscatter are reported in the same manner as are profiles of the 532 nm total backscatter. However, the first 34 bins of each profile contain fill values (-9999), because no 1064 nm data is downlinked from the 30.1 - 40 km altitude range.

Calibration Coefficients and Uncertainties

Column Reflectance

Geolocation and Altitude Registration

Latitude

Geodetic latitude, in degrees, of the laser footprint on the Earth's surface.

Longitude

Longitude, in degrees, of the laser footprint on the Earth's surface.

Lidar Data Altitude

这是一个HDF元数据字段,定义激光雷达1级剖面产品注册到的583个距离仓的高度(请参考表1:下行链路数据的不同高度范围的距离分辨率)。

This is an HDF metadata field that defines the altitudes of the 583 range bins (refer to Table 1: Range Resolutions of Different Altitude Ranges for Downlinked Data) to which lidar Level 1 profile products are registered.

Number Bins Shift

Number bins shift contains the number of 30 meter bins the profile specific 30 meter array elements are shifted to match the lowest altitude bin of the fixed 30 meter altitude array. Profile specific altitude arrays are computed as a function of the actual spacecraft offnadir angle, which varies slightly from the commanded spacecraft off-nadir angle. The fixed altitude array is computed using the commanded spacecraft off-nadir angle (0.3 or 3.0 degrees). The profile specific array elements may be shifted up or down.

Surface Altitude Shift

Surface altitude shift contains the altitude difference between the profile specific 30 meter altitude array and the fixed 30 meter altitude array at the array element that includes mean sea level. Profile specific altitude arrays are computed as a function of the actual spacecraft off-nadir angle, which varies slightly from the commanded spacecraft off-nadir angle. The fixed altitude array is computed using the commanded spacecraft off-nadir angle (0.3 or 3.0 degrees). The units are in kilometers and the values may be positive or negative. The difference is calculated as: Surface_Altitude_Shift = altitude (profile specific 30 meter mean sea level bin) - altitude (fixed 30 meter mean sea level bin).

Orbit Number

Orbit Number consists of three HDF metadata fields that define the number of revolutions by the CALIPSO spacecraft around the Earth and is incremented as the spacecraft passes the equator at the ascending node. To maintain consistency between the CALIPSO and CloudSat orbit parameters, the Orbit Number is keyed to the Cloudsat orbit 2121 at 23:00:47 on 2006/09/20. Because the CALIPSO data granules are organized according to day and night conditions, day/night boundaries do not coincide with transition points for defining orbit number. As such, three parameters are needed to describe the orbit number for each granule as:

  • Orbit Number at Granule Start: orbit number at the granule start time
  • Orbit Number at Granule End: orbit number at the granule stop time
  • Orbit Number Change Time: time at which the orbit number changes in the granule

Path Number

Orbit Number Path Number consists of three HDF metadata fields that define an index ranging from 1-233 that references orbits to the Worldwide Reference System (WRS). This global grid system was developed to support scene identification for LandSat imagery. Since the A-Train is maintained to the WRS grid within +/- 10 km, the Path Number provides a convenient index to support data searches, instead of having to define complex latitude and longitude regions along the orbit track. The Path Number is incremented after the maximum latitude in the orbit is realized and changes by a value of 16 between successive orbits. Because the CALIPSO data granules are organized according to day and night conditions, day/night boundaries do not coincide with transition points for defining path number. As such, three parameters are needed to describe the path number for each granule as:

  • Path Number at Granule Start: path number at the granule start time
  • Path Number at Granule End: path number at the granule stop time
  • Path Number Change Time: time at which the path number changes in the granule

Meteorological Data

Time Parameters

Profile Identification

Ancillary Data

Day Night Flag

This field indicates the lighting conditions at an altitude of ~24 km above mean sea level;

0 = day,

1 = night.

IGBP Surface Type

International Geosphere/Biosphere Programme (IGBP) classification of the surface type at the laser footprint. The IGBP surface types reported by CALIPSO are the same as those used in the CERES/SARB surface map.

Land Water Mask

This is an 8-bit integer indicating the surface type at the laser footprint, with

  • 0 = shallow ocean;
  • 1 = land;
  • 2 = coastlines;
  • 3 = shallow inland water;
  • 4 = intermittent water;
  • 5 = deep inland water;
  • 6 = continental ocean;
  • 7 = deep ocean.

NSIDC Surface Type

Snow and ice coverage for the surface at the laser footprint; data obtained from the National Snow and Ice Data Center (NSIDC).

Surface Elevation

这是从GTOPO30数字高程图(DEM)获得的激光足迹的表面高程,以高于当地平均海平面的公里为单位。

This is the surface elevation at the laser footprint, in kilometers above local mean sea level, obtained from the GTOPO30 digital elevation map (DEM).

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 2.01, 2.02

CALIOP_L1ProfileProducts_2.01.pdf

这篇关于【记录】CALIPSO Lidar Level 1B产品介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390988

相关文章

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Redis的安全机制详细介绍及配置方法

《Redis的安全机制详细介绍及配置方法》本文介绍Redis安全机制的配置方法,包括绑定IP地址、设置密码、保护模式、禁用危险命令、防火墙限制、TLS加密、客户端连接限制、最大内存使用和日志审计等,通... 目录1. 绑定 IP 地址2. 设置密码3. 保护模式4. 禁用危险命令5. 通过防火墙限制访问6.

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

docker编写java的jar完整步骤记录

《docker编写java的jar完整步骤记录》在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署,:本文主要介绍docker编写java的jar的相关资料,文中通过代... 目录all-docker/生成Docker打包部署文件配置服务A的Dockerfile (a/Docke

MySQL使用EXISTS检查记录是否存在的详细过程

《MySQL使用EXISTS检查记录是否存在的详细过程》EXISTS是SQL中用于检查子查询是否返回至少一条记录的运算符,它通常用于测试是否存在满足特定条件的记录,从而在主查询中进行相应操作,本文给大... 目录基本语法示例数据库和表结构1. 使用 EXISTS 在 SELECT 语句中2. 使用 EXIS

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1