【Loki】最佳实践 - 基于LogQL的Metric

2023-11-11 15:12
文章标签 最佳 实践 loki metric logql

本文主要是介绍【Loki】最佳实践 - 基于LogQL的Metric,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1. 前言
    • 2. 最佳实践
    • 3. 后记
    • 4. 参考

1. 前言

职业生涯一直都是在传统软件行业里,因此所接触到的系统多以单体为主,规模体量上限低,因此不论是团队技术氛围,还是实际的资源投入上,监控这一块都属于是年三十晚上打的兔子 —— 有你过年,没你也过年。

虽然一直缺乏实际的机会来实际体验监控在大型软件架构上的用途,但在平时的阅读理论熏陶,以及对于实际工作的刻意观察和思考之下,笔者一直也是尝试在推广自己对于监控的理解。

没有监控的应用运行如同闭眼开车,突出一个赌人品。
~
如果你不能测量它,你就无法优化它。所以监控应该是所有改良的起始步骤。
~
更重要的,也是需要不断普及的一个常识 —— 监控工具的使用与监控功能的实现和高效应用之间不是等价关系。监控的主要目:

  1. 问题被报告时,辅助更为快速的定位问题,不断缩短问题的MTTR。(这是一个没有终点的工作)
  2. 问题发生初始阶段,于客户之前先察觉问题,增强自身应对问题的灵活度。
  3. 通过统计分析,料敌于先,为应用优化提供指导和方向。

本文重点关注以上的第三点 —— “通过统计分析,为应用优化提供指导和方向”。就我个人理解,这才是监控的最大价值所在,解决问题只是最初级的CMMI1级,能够预测问题至少也是CMMI4了。

2. 最佳实践

注意:以下功能只是引子,启发思维之用,最重要的是站在系统全局,站在研发和产品的视野上,换位思考之下自主分析总结出更多的指标。不断为了系统优化指明方向,将系统优化方向的指导权牢牢掌握在自己手上,化被动为主动

正式开始前,先交代下背景。

  1. 背景项目为微服务架构,其日志格式整体分两类:access log(访问日志)和 business log(业务日志),具体格式如下:

    # access log(系统访问日志,使用logback-access组件自动实现)
    [%t{yy-MM-dd HH:mm:ss.SSS}][%tid][%clientHost][%requestURL,%statusCode][%elapsedTime,%i{Referer}][%reqAttribute{client}][%i{User-Agent}][%reqAttribute{userId}][%reqAttribute{serviceName}][%reqAttribute{serviceSourceType}][%reqAttribute{serviceType}][%reqAttribute{serviceOwner}][#%requestContent#][#%responseContent#]# business log(业务代码中采用log.xxx()方式输出的日志)
    [%d{yy-MM-dd HH:mm:ss.SSS}][%X{tid}][pid:${PID:-}][tid:%15.15t][%-40.40logger:%line][%5p] %msg%n
    
  2. promtail采集时,对日志进行了必须label标记:module(日志所属模块)jobfilename。(遵从最佳实践,我们尽量减少了label的使用)
    2.1 对于module label,我们简单地按照既有模块进行标记。分为:api-gateway,xxx等。
    2.2 对于job label,我们则是将其划分为gatewayLog(网关模块的access log,独立出来是为了方面专门的统计),accessLog(其它微服务模块的access log),normalLog(info/warn级别日志),errorLog(error级别日志)。

以上背景下,截至目前我们总结了如下的Metric指标:

######################### 系统QPS-以api-gateway作为切入点(过去五分钟)
rate({module="api-gateway", job="gatewayLog"}  | drop filename[5m])######################### 系统总访问量-以api-gateway作为切入点(过去2天)
count_over_time({job="gatewayLog"} | drop filename[2d])######################### 系统错误率-以api-gateway作为切入点(过去五分钟)
rate({module="api-gateway", job="errorLog"} | drop filename[5m])######################### 系统错误总数-以api-gateway作为切入点(过去五分钟)
count_over_time({module="api-gateway", job="errorLog"} | drop filename[5m])######################### 系统各模块的错误总数(过去两天)
# 这个结果里反馈得很有意思,主要错误都发生在api-gateway和serve-manager两个模块
count_over_time({job="errorLog"} | drop filename[2d])########################## 系统各模块的普通日志总数(过去两天)
# 搭配上面的"错误总数",很容易发现一些有意思的统计信息:
# server-manager模块在过去的两天里: 错误日志数量42981, 普通日志数量117
# api-gateway依然是日志产生的最大源头,存在三个数量级的差异
count_over_time({job="normalLog"} | drop filename[2d])########################## 系统各模块的所有日志总数(过去两天) ---- 以下两个任选其一
sum (count_over_time({module=~".+"}  | drop filename[2d])) by (module)count_over_time({module=~".+"}  | drop filename,job [2d])######################### url请求耗时的顺序排列
# 筛选出系统里请求最耗时的前十类url, 分析是否有进一步地优化空间
sort_desc(topk(10,quantile_over_time(0.99,{module="api-gateway", job="gatewayLog"}| json| __error__ = ""| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| requestUrl !~ ".*-proxy/.*"| unwrap elapsedTime [1h]) by (requestUrl)) by (elapsedTime))sort_desc(topk(10,avg_over_time({module="api-gateway", job="gatewayLog"}| json| __error__ = ""| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| drop clientIp,filename,job,level,logtime,method,module,msg,protocol,referer,serviceName,serviceOwner,serviceSourceType,serviceType,statusCode,tid,userAgent,userName| unwrap elapsedTime [1h]) by (requestUrl)))######################### 某个URL的请求耗时P99线
quantile_over_time(0.99,{module="api-gateway", job="gatewayLog"}| json| __error__ = ""| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| requestUrl = "/api/server-manager/xxx/yyy/zzz"| unwrap elapsedTime [1h]) by (requestUrl)######################### 某个URL的平均请求耗时(过去一小时内)
# 将 avg_over_time 切换为 max_over_time, min_over_time可获得过去一小时内该请求的最大耗时与最小耗时
avg_over_time({module="api-gateway", job="gatewayLog"}| json| __error__ = ""| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| requestUrl = "/api/server-manager/xxx/yyy/zzz"| drop clientIp,filename,job,level,logtime,method,module,msg,protocol,referer,serviceName,serviceOwner,serviceSourceType,serviceType,statusCode,tid,userAgent,userName| unwrap elapsedTime [1h])######################### 监控指标serviceName为空的情况排查
sum(count_over_time({module="api-gateway", job="gatewayLog"}| json| __error__ = ""| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| drop clientIp,filename,job,level,logtime,method,module,msg,protocol,referer,serviceOwner,serviceSourceType,serviceType,statusCode,tid,userAgent,userName|serviceName = ""[2d])) by (requestUrl)######################### 某个接口是否存在被调用过,被调用的次数: 以筛选过期接口。
{module="gis-manager", job="accessLog"}| json| __error__ = ""#| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll "(.*)\\?.*" .requestUrl "${1}"}}`| requestUrl =~ ".*/services.*"#====================== 非人工访问带来的请求量
sum(count_over_time({module="api-gateway", job="gatewayLog"}| json| __error__ = ""|userAgent = "fasthttp" or userAgent = "Apache-HttpClient/4.5.13 (Java/1.8.0_332)"[2d]))# api-gateway异常日志统计 —— 统计每类异常的总数,对应的url,分析到底是哪些链接到底的问题数量最多,找出优化点。
sum(count_over_time({module="api-gateway", job="errorLog"}| drop filename!~ "(?s).*PreAuthFilter.*"|= "Exception"| json| __error__ = ""| label_format exceptionType=`{{regexReplaceAll  "(?s).+?\\s(.*?)Exception:.*" .msg "${1}Exception"}}`| drop msg [2h])) by (exceptionType)

3. 后记

可以看出,以上其实都是在熟悉LogQL之后根据需求马上就能写出来的表达式,所以本文意为总结并且抛砖引玉,希望不断完全系统实时Metric库,延缓系统的腐坏速度。

过往很多时候的优化,虽然我们也是试图做全局通盘考虑,但确实全局视野的情况下,实际效果上看更多还是单点优化。

但在引入可观测性的Metric之后,情况就能发生根本性的改变 —— 现在有了一个时刻就绪的全局检验方法,随时验证/检查自己的思路是否发生偏移;用客观的全局视野和数据来判定当前系统的主要矛盾,而不是靠"感觉"来决定应该先去做哪方面的优化。

4. 参考

  1. Office Site - LogQL: Log query language

这篇关于【Loki】最佳实践 - 基于LogQL的Metric的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390960

相关文章

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定