控制器设计中的传感数据滤波——IIR滤波器的Matlab辅助设计

本文主要是介绍控制器设计中的传感数据滤波——IIR滤波器的Matlab辅助设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实际的控制中,传感器的数据总是带有噪声,直接使用容易导致控制器的震荡。
因此,对传感器数据进行滤波是需要特别考虑的。
由于控制器通常由计算机运算,因此无论是传感信号还是控制信号都是数字信号,所以需要设计数字滤波器。
FIR和IIR是两种常用的数字滤波器实现方法,这篇博客将会介绍如何设计一个经典的IIR数字滤波器。

1 IIR滤波器

IIR滤波器的形式为(离散域形式):
H ( z ) = Y ( z ) X ( z ) = ∑ p = 0 M a p z − p ∑ p = 0 N b p z − p H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{p=0}^{M}a_pz^{-p}}{\sum_{p=0}^{N}b_pz^{-p}} H(z)=X(z)Y(z)=p=0Nbpzpp=0Mapzp
通常, b 0 = 1 b_0=1 b0=1 x x x代表输入, y y y代表输出。
改写成差分方程形式就是:
y ( k ) + b 1 y ( k − 1 ) + b 2 y ( k − 2 ) + . . . = a 0 x ( k ) + a 1 x ( k − 1 ) + a 2 x ( k − 2 ) + . . . y(k)+b_1y(k-1)+b_2y(k-2)+...=a_0x(k)+a_1x(k-1)+a_2x(k-2)+... y(k)+b1y(k1)+b2y(k2)+...=a0x(k)+a1x(k1)+a2x(k2)+...
即:
y ( k ) = − ∑ p = 1 N b p y ( k − p ) + ∑ p = 0 M a p x ( k − p ) y(k)=-\sum_{p=1}^{N}b_py(k-p)+\sum_{p=0}^{M}a_px(k-p) y(k)=p=1Nbpy(kp)+p=0Mapx(kp)
这里可以看到,IIR滤波器是既和输入有关,也和输出有关的,也就是说这个滤波器是具有反馈的。
与之相对应的FIR滤波器的形式如下:
H ( z ) = Y ( z ) X ( z ) = ∑ n = 0 N − 1 h ( n ) z − n H(z)=\frac{Y(z)}{X(z)}=\sum_{n=0}^{N-1}h(n)z^{-n} H(z)=X(z)Y(z)=n=0N1h(n)zn
即:
y ( k ) = ∑ n = 0 N − 1 h ( n ) x ( k − n ) y(k)=\sum_{n=0}^{N-1}h(n)x(k-n) y(k)=n=0N1h(n)x(kn)
即FIR是单纯和输入有关的,没有反馈。

2 滤波器设计

实际上,数字滤波器的结构非常简单,代码实现上也非常容易。
数字滤波器的核心在于如何确定滤波器中的各项系数,这是滤波器设计的重中之中。我们学习的庞大复杂的数字滤波器的相关理论也是为其服务的。
所幸,如今要设计滤波器,使用MATLAB就可以了,不需要自己去进行复杂的计算。

一般来说,IIR滤波器的设计可以分为四个步骤:

  1. 选择一种模拟滤波器(这里通常可以是巴特沃斯、切比雪夫滤波器等)
  2. 确定数字滤波器的截止频率(数字滤波器和模拟滤波器截止频率存在对应关系)
  3. 计算模拟滤波器截止频率,并计算模拟滤波器中各个参数的值
  4. 利用双线性变换,将模拟滤波器中的s用z代替,得到最终的数字滤波器

如今,我们拥有了MATLAB的工具,设计一个IIR滤波器只需要一句代码就可以了。
选取一阶低通巴特沃斯滤波器为例,其IIR数字滤波器的系数可由下面的语句计算:

[a,b]=butter(1, 0.1,'low');
% 其中:
% butter代表巴特沃斯滤波器
% 1代表1阶
% 0.1代表数字滤波器的截止频率占采样频率的比值,例如传感器采样频率是100hz,期望截止频率是10hz,那么这个比值就是:10hz/100hz=0.1
% 'low'代表低通滤波器
% a和b代表滤波器系数

当然,想要选择哪种模拟滤波器进行IIR的实现,大家可以自由选择,MATLAB中都有对应工具。

3 MATLAB示例

为了更好的说明,如何利用MATLAB实现数字滤波,我写了一个程序:

clc;
clear all;
close all;
% 生成有噪声数据
dt = 0.01; % 采样频率: 100hz
f1 = 2;  % 频率成分1
f2 = 5;  % 频率成分2
f3 = 20; % 频率成分3
f4 = 40; % 频率成分4
X = [];
G = [];
for t = 0:dt:3g = -sin(f1*2*pi*t+0.1) + 0.2*sin(f2*2*pi*t+0.8);x = g - 0.3*sin(f3*2*pi*t+0.8) + 0.4*sin(f4*2*pi*t-0.8);G = [G;g];X = [X;x]; 
end
% 展示结果
% 原始数据
subplot(4,1,1)
plot(G, 'g-', 'LineWidth', 2)
hold on
plot(X,'r-', 'LineWidth', 1)
hold on
legend('无噪声', '原始数据')
% 低通滤波
sX0 = X;
alpha = 0.1;
for ii=2:length(X)sX0(ii) = (1-alpha)*sX0(ii-1) + alpha*X(ii);
end
subplot(4,1,2)
plot(G, 'g-', 'LineWidth', 2)
hold on
plot(sX0,'c-', 'LineWidth', 1)
hold on
legend('无噪声', '一阶低通滤波')
% IIR     
% b0*Y(k)-b1*Y(k-1)-b2*Y(k-2)-...=a0*X(k)+a1*X(k-1)+a2*X(k-2)+...
% Y(k)=(b1*Y(k-1)+b2*Y(k-2)+...+a0*X(k)+a1*X(k-1)+a2*X(k-2)+...)/b0
% 一阶巴特沃斯滤波器
[a,b]=butter(1,0.1,'low'); % 10hz/100hz=0.1
sX1 = butterworth_filter(X, a, b, 1);
subplot(4,1,3)
plot(G, 'g-', 'LineWidth', 2)
hold on
plot(sX1,'b-', 'LineWidth', 1)
hold on
legend('无噪声', '一阶巴特沃斯')
% 二阶巴特沃斯滤波器
[a,b]=butter(2,0.1,'low'); % 10hz/100hz=0.1
sX2 = butterworth_filter(X, a, b, 2);
subplot(4,1,4)
plot(G, 'g-', 'LineWidth', 2)
hold on
plot(sX2,'m-', 'LineWidth', 1)
hold on
legend('无噪声', '二阶巴特沃斯')
function smooth_data = butterworth_filter(data, a, b, order)smooth_data = data;for ii = order+1:length(data)parta = 0;for jj = 1:order+1parta = parta + a(jj)*data(ii-jj+1);endpartb = 0;for kk = 2:order+1partb = partb - b(kk)*smooth_data(ii-kk+1);endsmooth_data(ii) = parta + partb;end
end

运行结果如下:
在这里插入图片描述

4 参考资料

  • 如何快速设计一个IIR滤波器

这篇关于控制器设计中的传感数据滤波——IIR滤波器的Matlab辅助设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/388427

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

MySQL使用binlog2sql工具实现在线恢复数据功能

《MySQL使用binlog2sql工具实现在线恢复数据功能》binlog2sql是大众点评开源的一款用于解析MySQLbinlog的工具,根据不同选项,可以得到原始SQL、回滚SQL等,下面我们就来... 目录背景目标步骤准备工作恢复数据结果验证结论背景生产数据库执行 SQL 脚本,一般会经过正规的审批