DeepFaceLab进阶:H128,DF,SAE模型有何不同?哪个最好?

2023-11-10 23:59

本文主要是介绍DeepFaceLab进阶:H128,DF,SAE模型有何不同?哪个最好?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

整个换脸过程中模型是最重要的一部分,耗时久,调优难,很多人虽然一直在跑模型,却并不知道每个模型的特点。

我也常常被问及:

到底用哪个模型换脸效果最好?

H128和DF有什么差别?

H64和H28有什么不同?

SAE是最好的吗?

全脸和半脸是什么意思?

等等问题。

今天,就专门写一篇文章,来统一解答这些疑问。

首先,来说说每个模型的特点。

 

H64模型

H64模型也被称为经典模型/原始模型(original),DeepFakes早期就是靠这个模型名震江湖,后来的FaceSwap,DeepFaceLab,Fakeapp都包含这个模型。

相比其他模型,这个模型速度最快,对系统的要求最低,但是同时效果也是比较差的一个。其中64代表的是头像的大小为64px *64px。 这是什么意思呢?这个意思就是,如果你需要替换的头像大小为64像素那么就刚刚好,如果你的视频脸特别大,那么不管你练多久,最终合成视频脸部肯定是模糊的。 H64轻量级最低显存要求为2G,H64默认参数需要3G。

 

H128模型

这个模型和H64的内部结构是完全一样的,唯一的差别就是像素不一样,简而意之就是能处理脸的大小不一样。这个模型对应的像素为128*128,能应对大部分远景和中景镜头,部分特写镜头也能勉强处理。所以他的好处非常明显,缺点嘛自然是需要更久的时间,更大的显存。H128轻量级需要4G显存,H128默认参数需要6G显存(5G+)。

 

DF模型

DF的结构和H64以及H128其实也是一样的。唯一不同的地方是DF为全脸模型(Full Face),像素为128*128 ,  使用该模型换出来的脸一般来说比H128更像,因为脸部面积大,但是兼容性更差,边缘问题突出。 显存要求为5G+

 

LIAEF128模型

LIAEF128模型的大小和DF一致,同样为全脸模型。但是内部结构有所不同,所以这个模型和前面的模型有本质的不同。LIAEF128能使换脸目标发生一定的形变,以解决换脸生硬的问题,以及一些边缘问题,和轻微遮挡的问题。但是形变容易导致相似度降低,你可能会看不出来谁换了谁。

 

SAE模型

各大换脸软件基本都是基于以上模型。但是DeepFaceLab却多出了一个模型SAE。按作者的说法,这是一个超级模型。其实从本质上来说,这并不是一个独立的模型,这是一个建立在上面所有模型之上的模型。通过SAE的参数配置,可以配置出以上各种模型。

也就是SAE最大的优势在于“参数可以配置” 。这个模型是DFL主打的模型,可玩性非常高,参数非常多,可以调优的空间也非常大。你可以自定义模型(DF/H/LIAEF,脸型(Half/Full),像素(64/128/256,稍微魔改可以512) ,还有N多参数可探索。

同时有几个缺点,容易崩溃,默认参数合成效果不理想(面具),跑起来特别慢,对系统要求最高。

 

看了几个模型的异同,大家应该有一个比较好的认识了。关于如何选择模型,你可以参考一下几个点。

  1.  我的配置,不同配置选不同模型。
  2.  我的耐心,不同耐心选不同模型。
  3.  我的追求,不同追求选不同模型。
  4.  我的场景,不同长选择不同模型。

这几点,不展开说了,其实就是从,时间,配置,效果之间做一个权衡。也就是说没有绝对好的模型,也没有绝对差的模型,只有合适的模型。这也是为什么有那么多模型并存的原因。

当然,不管你用什么模型,训练起来都不是那么简单,都需要有极大的耐心和恒心。

 

全脸和半脸的差别

最后来说说全脸(Full Face)和半脸(Half Face)。 对于这个概念很多人一知半解,很多人有根本性的误解,其实主要是怪这个名字取得不好。说真像之前,先来说说两种误解。

第一种: 全脸包含眉毛,半脸不包含眉毛,所以为了换眉毛我选DF

第二种:全脸是整张脸, 半脸是左边一半脸或者右边一半脸。

这两种都是错的,一个认为是垂直方向的一半,一个认为是水平方向的一半,都是被这个名字给误导了。

其实他是从内向外的一半。曾经有一个灵魂画手用一张图解释了两者的差别。

我不擅长画画,我就用齐天大圣孙悟空来做一个解说吧。所谓半脸就是猴哥“不长毛”的部分,全脸就是整张脸(不包括额头)。 就是这么简单!!!

这篇关于DeepFaceLab进阶:H128,DF,SAE模型有何不同?哪个最好?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/386167

相关文章

最好用的WPF加载动画功能

《最好用的WPF加载动画功能》当开发应用程序时,提供良好的用户体验(UX)是至关重要的,加载动画作为一种有效的沟通工具,它不仅能告知用户系统正在工作,还能够通过视觉上的吸引力来增强整体用户体验,本文给... 目录前言需求分析高级用法综合案例总结最后前言当开发应用程序时,提供良好的用户体验(UX)是至关重要

无线路由器哪个品牌好用信号强? 口碑最好的三个路由器大比拼

《无线路由器哪个品牌好用信号强?口碑最好的三个路由器大比拼》不同品牌在信号覆盖、稳定性和易用性等方面各有特色,如何在众多选择中找到最适合自己的那款无线路由器呢?今天推荐三款路由器让你的网速起飞... 今天我们来聊聊那些让网速飞起来的路由器。在这个信息爆炸的时代,一个好路由器简直就是家庭网编程络的心脏。无论你

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了