本文主要是介绍九种常用二次曲面的构造过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
九种常用二次曲面的构造过程
- 1.九种常用二次曲面的构造过程
- 1.1 椭圆锥面
- 1.2 椭球面
- 1.3 单叶双曲面
- 1.4 双叶双曲面
- 1.5 椭圆抛物面
- 1.6 双曲抛物面(马鞍面)
- 1.7 椭圆柱面
- 1.8 双曲柱面
- 1.9 抛物柱面
1.九种常用二次曲面的构造过程
声明:部分截图来自《Thomas Calculus》、构造过程参考自李艳芳考研数学
1.1 椭圆锥面
在 x O z xOz xOz 平面上的直线 x = a z x=az x=az
绕 z z z轴旋转得到圆锥面
x 2 + y 2 a 2 = z 2 \frac{x^2+y^2}{a^2}=z^2 a2x2+y2=z2
再将此旋转曲面沿 y y y轴方向伸缩 b a \frac{b}{a} ab倍,得到椭圆锥面
椭圆锥面标准方程为:
x 2 a 2 + y 2 b 2 = z 2 \frac{x^2}{a^2}+\frac{y^2}{b^2}=z^2 a2x2+b2y2=z2
1.2 椭球面
将 x O z xOz xOz平面上的椭圆
x 2 a 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{z^2}{c^2}=1 a2x2+c2z2=1
绕 z z z轴旋转得到旋转椭球面
x 2 + y 2 a 2 + z 2 c 2 = 1 \frac{x^2+y^2}{a^2}+\frac{z^2}{c^2}=1 a2x2+y2+c2z2=1
再将此旋转曲面沿着 y y y轴方向伸缩 b a \frac{b}{a} ab倍,得到椭球面
椭球面方程
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1
1.3 单叶双曲面
将 x O z xOz xOz平面上的双曲线
x 2 a 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{z^2}{c^2}=1 a2x2−c2z2=1
绕 z z z轴旋转得到旋转单叶双曲面
x 2 + y 2 a 2 − z 2 c 2 = 1 \frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1 a2x2+y2−c2z2=1
再将此旋转曲面沿着 y y y轴方向伸缩 b a \frac{b}{a} ab倍,得到单叶双曲面
单叶双曲面方程
x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2−c2z2=1
1.4 双叶双曲面
将 x O z xOz xOz平面上的双曲线
x 2 a 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{z^2}{c^2}=1 a2x2−c2z2=1
绕 x x x轴旋转得到旋转双叶双曲面
x 2 a 2 − y 2 + z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{y^2+z^2}{c^2}=1 a2x2−c2y2+z2=1
再将此旋转曲面沿着 y y y轴方向伸缩 b a \frac{b}{a} ab倍,得到双叶双曲面
双叶双曲面方程
x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2−b2y2−c2z2=1
1.5 椭圆抛物面
将 x O z xOz xOz平面上的抛物线
x 2 a 2 = z \frac{x^2}{a^2}=z a2x2=z
绕 z z z轴旋转得到旋转抛物面
x 2 + y 2 a 2 = z \frac{x^2+y^2}{a^2}=z a2x2+y2=z
再将此旋转曲面沿着 y y y轴方向伸缩 b a \frac{b}{a} ab倍,得到椭圆抛物面
椭圆抛物面方程
x 2 a 2 + y 2 b 2 = z \frac{x^2}{a^2}+\frac{y^2}{b^2}=z a2x2+b2y2=z
1.6 双曲抛物面(马鞍面)
绿色抛物线沿着蓝色抛物线(或蓝色沿着绿色)移动构成马鞍面
x 2 a 2 − y 2 b 2 = z \frac{x^2}{a^2}-\frac{y^2}{b^2}=z a2x2−b2y2=z
若用平面 x = t x=t x=t 来截取双曲抛物面,所得截痕为平面 x = t x=t x=t 上的抛物线
y 2 b 2 = − z + t 2 a 2 \frac{y^2}{b^2}=-z+\frac{t^2}{a^2} b2y2=−z+a2t2
若用平面 y = t y=t y=t 来截取双曲抛物面,所得截痕为平面 y = t y=t y=t 上的抛物线
x 2 a 2 = z + t 2 b 2 \frac{x^2}{a^2}=z+\frac{t^2}{b^2} a2x2=z+b2t2
1.7 椭圆柱面
椭圆上下平移得到
x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1
1.8 双曲柱面
双曲线上下平移得到
x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2−b2y2=1
1.9 抛物柱面
抛物线上下平移得到
y 2 = a x y^2=ax y2=ax
这篇关于九种常用二次曲面的构造过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!