基于insightface实现的人脸检测,人脸识别,insightface源码讲解。

2023-11-10 18:12

本文主要是介绍基于insightface实现的人脸检测,人脸识别,insightface源码讲解。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.搭建insightface需要的环境

2.下载insightface工程

3.代码工程文件讲解

        3.1 python-package

        3.2 进行测试

        3.3 examples

4. 人脸识别

5.代码理解:


1.搭建insightface需要的环境

        埋个坑,后续再写,笔者在安装过程中遇到了一些问题。

2.下载insightface工程

        直接打开github搜索insightface即可找到,或者点击下面的连接直接跳转。

        deepinsight/insightface: State-of-the-art 2D and 3D Face Analysis Project (github.com)

     

3.代码工程文件讲解

        从github上下载完成功,使用pycharm 打开,目录如下,笔者认为最终要的是在使用红框框处的两个文件夹,我们先讲解python-package。

        3.1 python-package

        我们首先要在pycharm 中的终端执行一下  python-package中的setup.py这个文件

        具体操作如下,先跳转到python-package目录下,

        然后执行: python setup.py build_ext -i

        如下图所示执行成功。

        其实笔者在这一部分是有疑惑的,这个setup.py文件的作用是什么?笔者不太懂,如果有大佬明白,希望可以指教一下。

        3.2 进行测试

        按照官方介绍,我们使用示例代码进行检测,先在python-package目录下创建 test.py文件(一定要在python-package目录下)

然后将下列代码输入,然后运行就可以得到检测图片

import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_imageapp = FaceAnalysis(allowed_modules=['detection'],providers=['CUDAExecutionProvider', 'CPUExecutionProvider'],download=False)
app.prepare(ctx_id=0, det_size=(640, 640))
img = ins_get_image('t1')  #不用带后缀,图片放到./insightface/python-package/insightface/data/images
faces = app.get(img)
print("faces::::", faces)
print("len:", len(faces))
rimg = app.draw_on(img, faces)
cv2.imwrite("./ldh_out put.jpg", rimg)
cv2.imshow("frame", rimg)
if cv2.waitKey(0) & 0xFF == ord('Q'):cv2.destroyAllWindows()

        第一次运行会自动下载模型,如果网速十分拉胯的话,可以选择自己去github上下载,然后把模型解压放在下方图片中红色框框中的地址。

我也把模型下载链接放在这了:buffalo_l.zip - Google 云端硬盘

        下载的模型文件,测试的使用除det_10g.onnx必须使用,其他四个模型文件根据自己所需使用。  此外github上此项目还拥有丰富的模型文件,根据自己所需下载使用(目前我还没太搞懂,如果有大佬可以,可以写篇博客介绍一下)

下面是检测后的图片

        至此项目就算是跑通了。

        3.3 examples

        exampes文件夹中也给大家提供了一些事例,大家可以自行去理解,运行,run一下。注意将这些文件放在pythoh-package目录下运行。

4. 人脸识别

        目前这一部分我还没有完全做完,先讲一下我的思路,以及现在做的一些工作。

前面进行的只是人脸检测,可以检测到图片中的人脸,并不能检测到图片中的人脸是谁。

那么思路就是,先建立一个人脸数据库,然后检测出人脸数据库中每个人的人脸特征数据(接下来我打算使用embedding 特征),存储在一个文件中,当我们需要检测人脸时,我们先将存储人脸数据特征G的文件读入内存,然后使用模型检测出需要检测的人脸的人脸特征T,然后将T特征与G特征使用一定方法对比(欧氏距离,余弦距离等),选出与之最相似的人脸。

        下列是我初始写的计算相似度的代码

import argparse  # 导入参数解析模块
import cv2  # 导入OpenCV模块
import sys  # 导入sys模块
import numpy as np  # 导入NumPy模块
import insightface  # 导入insightface模块
from insightface.app import FaceAnalysis  # 从insightface.app中导入FaceAnalysis类
from insightface.data import get_image as ins_get_image  # 从insightface.data中导入get_image函数
import time
assert insightface.__version__>='0.3'  # 断言版本不低于0.3parser = argparse.ArgumentParser(description='insightface app test')  # 创建参数解析器,设置描述为'insightface app test'
# 通用设置
parser.add_argument('--ctx', default=0, type=int, help='ctx id, <0 means using cpu')  # 添加参数'--ctx',默认值为0,类型为整数,帮助信息为'ctx id, <0 means using cpu'
parser.add_argument('--det-size', default=640, type=int, help='detection size')  # 添加参数'--det-size',默认值为640,类型为整数,帮助信息为'detection size'
args = parser.parse_args()  # 解析参数app = FaceAnalysis()  # 创建FaceAnalysis实例
app.prepare(ctx_id=args.ctx, det_size=(args.det_size,args.det_size))  # 准备分析器,设置ctx_id和det_size
t= time.time()
img = ins_get_image('t1')  # 获取图像't1'
# t= time.time()
faces = app.get(img)  # 识别图像中的人脸
e = time.time()
print("识别人脸:", e-t)
# assert len(faces)==6  # 断言人脸数量为6
rimg = app.draw_on(img, faces)  # 在图像上绘制检测到的人脸
cv2.imwrite("./t1_output.jpg", rimg)  # 将结果图像保存为"t1_output.jpg"# 然后打印两两人脸之间的相似度
feats = []  # 创建空列表feats
test = []
for face in faces:  # 遍历每个人脸feats.append(face.normed_embedding)  # 将人脸的嵌入特征加入feats列表
test.append(faces[0].normed_embedding)
test = np.array(test, dtype=np.float32)
feats = np.array(feats, dtype=np.float32)  # 将feats转换为NumPy数组,数据类型为np.float32
a = time.time()
sims = np.dot(feats, feats.T)  # 计算feats和其转置之间的点积,得到相似度矩阵
b = time.time()
print(sims)  # 输出相似度矩阵
print("用时1:", b-a)# 使用landmark_2d_106 计算相似度
land = []
for face in faces:land.append(face.landmark_2d_106)
land = np.array(land, dtype=np.float32)  # 将feats转换为NumPy数组,数据类型为np.float32
def euclidean_distance(landmarks1, landmarks2):# 计算两组特征点之间的距离distances = np.sqrt(np.sum((landmarks1 - landmarks2)**2, axis=1))# 返回平均距离作为匹配度return np.mean(distances)
dist_matrix = np.zeros((len(land), len(land)))
# 计算欧氏距禮以进行人脸比对
c = time.time()
for i in range(len(land)):for j in range(len(land)):dist_matrix[i, j] = euclidean_distance(land[i], land[j])
print("The distance matrix between the faces is:", dist_matrix)
d = time.time()
print("用时2:", d-c)

        相似度矩阵:

5.代码理解:

        我们以test.py代码为例

        前几行都是导包,直接到第七行代码:

app = FaceAnalysis(allowed_modules=['detection'],providers=['CUDAExecutionProvider', 'CPUExecutionProvider'],download=False)

        我们先不纠结这里面参数啥的,这行代码创建了一个实例,然后最大的作用就是加载读入了本地的那些模型文件。加载主要过程如下图我画红框的部分。大家可以自己debug理解一下。

        第八行代码就是设置了一些参数

app.prepare(ctx_id=0, det_size=(640, 640))

       第九行代码就是获取要检测的图片

img = ins_get_image('t1')  #不用带后缀,图片放到./insightface/python-package/insightface/data/images

        第十行就是进行检测了

faces = app.get(img)

        过程大概将就是先使用下面的人脸检测模型把人脸都检测出来。

        接着使用剩余的模型检测各种人脸特征。

        检测到了六张人脸

        一张人脸包含如下数据

        这里并没有人脸特征数据,因为第七行代码中我们设置了参数:

        allowed_modules=['detection'],删除后就可以检测人脸特征

        创作不易,求点赞,求关注,求收藏。水平有限,如有误解之处,求指正。

这篇关于基于insightface实现的人脸检测,人脸识别,insightface源码讲解。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/384414

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义