B-Trees|CS 61B Data Structures, Spring 2019

2023-11-10 18:10

本文主要是介绍B-Trees|CS 61B Data Structures, Spring 2019,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B-Trees

  • B-Trees
    • BST Tree Height
    • BST(binary search tree) Performance ,Height, Depth
    • B-trees / 2-3 trees /2-3-4 trees
      • Problom with Binary search tree
      • solution:B Tree
      • The Real Name for Splitting Trees is “B Trees”
      • B-Tree Bushiness Invariants
      • B-Tree Runtime Analysis
        • Height of a B-Tree with Limit L(L: Max number of items per node.)
        • Runtime for contains
          • Runtime for contains:
          • Runtime for add
    • Summary

B-Trees

*** (Algs 424-431, 432-448 (extra))***

BST Tree Height

The difference in runtime between a worst-case tree and best-case tree is very dramati

  • Worst case: Θ(N)
  • Best-case: Θ(logN) (where N is number of nodes in the tree)
    在这里插入图片描述

the tree on the left side called “bushy”,the tree on the right hand called “spindly”(n its basically a linked list and the runtime is linear)

BigO is not equivalent to worst case! Remember, BigO is an upper bound,Thus, even though we said the worst-case runtime of a BST is Θ(N), it also falls under O(N ).(意味着runtime的增长速度小于等于N)

BST(binary search tree) Performance ,Height, Depth

  • depth: the number of links between a node and the root.
  • height: the lowest depth of a tree.
  • average depth: average of the total depths in the tree. You calculate this by taking :
    在这里插入图片描述 where d is depth and n is number of nodes at that depth.

for exampel:

在这里插入图片描述

average depth of the exampel: (0x1 + 1x2 + 2x4 + 3x6 + 4x1)/(1+2+4+6+1) = 2.35

The height of the tree determines the worst-case runtime, because in the worst case the node we are looking for is at the bottom of the tree.
The average depth determines the average-case runtime.

Random trees in the real world have Θ(log N) average depth and height.
In other words: Random trees are bushy, not spindly.but in same cases we couldn’t always insert items randomly in our tree,in other world we may get a spindly tree.

In the next chapter we will learn about a tree that always maintains its balance(always get the tree like a bushy tree)

B-trees / 2-3 trees /2-3-4 trees

Problom with Binary search tree

The problem with BST’s is that we always insert at a leaf node. This is what causes the height to increase.

假设有四个点k,v,y,z.,选择k为root,因为其余三个点均比k大,最后会形成一个bushy tree,倒是搜索一个点所需的时间是Θ(N)而不是Θ(logN)
Θ(logN)比Θ(N)要小很多
在这里插入图片描述

solution:B Tree

example for B Tree:

The process of adding a node to a 2-3-4 tree(每个点最多可以包含三个item) is:

  1. We still always inserting into a leaf node, so take the node you want to insert and traverse down the tree with it, going left and right according to whether or not the node to be inserted is greater than or smaller than the items in each node.
  2. After adding the node to the leaf node, if the new node has 4 nodes, then pop up the middle left node and re-arrange the children accordingly.(若叶子节点现在有4个item,我们因该将左边第二个item移到父节点,并将剩余的三个item按照大小一次拆分)
    在这里插入图片描述
  3. If this results in the parent node having 4 nodes, then pop up the middle left node again, rearranging the children accordingly.
  4. Repeat this process until the parent node can accommodate or you get to the root(若根节点中也有四个item,则把左边第二个拿出来作为新的root)
    在这里插入图片描述
  • more exampel:
    在这里插入图片描述
    在这里插入图片描述

Observation: Splitting-trees have perfect balance:
If we split the root, every node gets pushed down by exactly one level.
If we split a leaf node or internal node, the height doesn’t change

The Real Name for Splitting Trees is “B Trees”

Splitting tree is a better name, but I didn’t invent them, so we’re stuck with their real name: B-trees.

  • B-trees of order L=3 (每个节点可以有三个item) are also called a 2-3-4 tree or a 2-4 tree.
    • “2-3-4” refers to the number of children that a node can have, e.g. a 2-3-4 tree node may have 2, 3, or 4 children.
  • B-trees of order L=2 are also called a 2-3 tree.

B-Trees are most popular in two specific contexts:
Small L (L=2 or L=3):
Used as a conceptually simple balanced search tree (as today).
L is very large (say thousands).
Used in practice for databases and filesystems (i.e. systems with very large records).

B-Tree Bushiness Invariants

Because of the way B-Trees are constructed, we get two nice invariants:

  • All leaves must be the same distance from the source.
  • A non-leaf node with k items must have exactly k+1 children.
  • Example: The tree given below is impossible.
    and [5 6 7]) are a different distance from the source.
    Non-leaf node [2 3] has two items but only only one child. Should have three children.
    在这里插入图片描述

These invariants guarantee that our trees will be bushy.

B-Tree Runtime Analysis

Height of a B-Tree with Limit L(L: Max number of items per node.)

L=2

  • best case
    在这里插入图片描述
  • worst case
    在这里插入图片描述

Height: Between between best and worst case is ~logL+1(N) and ~log2(N),Overall height is therefore Θ(log N).

Runtime for contains
Runtime for contains:
  • Worst case number of nodes to inspect: H(Hight)
  • Worst case number of items to inspect per node: L
  • Overall runtime: O(HL)

Since H = Θ(log N), overall runtime is O(L log N).
Since L is a constant, runtime is therefore O(log N).

Runtime for add

Runtime for add:

  • Worst case number of nodes to inspect: H + 1
  • Worst case number of items to inspect per node: L
  • Worst case number of split operations: H + 1(若在leaf增加一个item后,超过该节点能承载的最大ITEM数,需要将左边第二个节点向上移动,最坏的情况是,当所有节点中均装有L个ITEM,此时添加一个新item,会导致某个item向上移动的操作一直进行,知道出现一个新的root)
  • 在这里插入图片描述

Overall runtime: O(HL)

Since H = Θ(log N), overall runtime is O(L log N).
Since L is a constant, runtime is therefore O(log N).

Bottom line: contains and add are both O(log N).

Summary

  • BSTs have best case height Θ(log N), and worst case height Θ(N).

  • Big O is not the same thing as worst case!

  • B-Trees are a modification of the binary search tree that avoids Θ(N) worst case.

  • Nodes may contain between 1 and L items.

  • contains works almost exactly like a normal BST.

  • add works by adding items to existing leaf nodes.

  • If nodes are too full, they split.

  • Resulting tree has perfect balance. Runtime for operations is O(log N).

  • Have not discussed deletion. See extra slides if you’re curious.

  • Have not discussed how splitting works if L > 3 (see some other class).

  • B-trees are more complex, but they can efficiently handle ANY insertion order.

这篇关于B-Trees|CS 61B Data Structures, Spring 2019的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/384396

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2