B-Trees|CS 61B Data Structures, Spring 2019

2023-11-10 18:10

本文主要是介绍B-Trees|CS 61B Data Structures, Spring 2019,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B-Trees

  • B-Trees
    • BST Tree Height
    • BST(binary search tree) Performance ,Height, Depth
    • B-trees / 2-3 trees /2-3-4 trees
      • Problom with Binary search tree
      • solution:B Tree
      • The Real Name for Splitting Trees is “B Trees”
      • B-Tree Bushiness Invariants
      • B-Tree Runtime Analysis
        • Height of a B-Tree with Limit L(L: Max number of items per node.)
        • Runtime for contains
          • Runtime for contains:
          • Runtime for add
    • Summary

B-Trees

*** (Algs 424-431, 432-448 (extra))***

BST Tree Height

The difference in runtime between a worst-case tree and best-case tree is very dramati

  • Worst case: Θ(N)
  • Best-case: Θ(logN) (where N is number of nodes in the tree)
    在这里插入图片描述

the tree on the left side called “bushy”,the tree on the right hand called “spindly”(n its basically a linked list and the runtime is linear)

BigO is not equivalent to worst case! Remember, BigO is an upper bound,Thus, even though we said the worst-case runtime of a BST is Θ(N), it also falls under O(N ).(意味着runtime的增长速度小于等于N)

BST(binary search tree) Performance ,Height, Depth

  • depth: the number of links between a node and the root.
  • height: the lowest depth of a tree.
  • average depth: average of the total depths in the tree. You calculate this by taking :
    在这里插入图片描述 where d is depth and n is number of nodes at that depth.

for exampel:

在这里插入图片描述

average depth of the exampel: (0x1 + 1x2 + 2x4 + 3x6 + 4x1)/(1+2+4+6+1) = 2.35

The height of the tree determines the worst-case runtime, because in the worst case the node we are looking for is at the bottom of the tree.
The average depth determines the average-case runtime.

Random trees in the real world have Θ(log N) average depth and height.
In other words: Random trees are bushy, not spindly.but in same cases we couldn’t always insert items randomly in our tree,in other world we may get a spindly tree.

In the next chapter we will learn about a tree that always maintains its balance(always get the tree like a bushy tree)

B-trees / 2-3 trees /2-3-4 trees

Problom with Binary search tree

The problem with BST’s is that we always insert at a leaf node. This is what causes the height to increase.

假设有四个点k,v,y,z.,选择k为root,因为其余三个点均比k大,最后会形成一个bushy tree,倒是搜索一个点所需的时间是Θ(N)而不是Θ(logN)
Θ(logN)比Θ(N)要小很多
在这里插入图片描述

solution:B Tree

example for B Tree:

The process of adding a node to a 2-3-4 tree(每个点最多可以包含三个item) is:

  1. We still always inserting into a leaf node, so take the node you want to insert and traverse down the tree with it, going left and right according to whether or not the node to be inserted is greater than or smaller than the items in each node.
  2. After adding the node to the leaf node, if the new node has 4 nodes, then pop up the middle left node and re-arrange the children accordingly.(若叶子节点现在有4个item,我们因该将左边第二个item移到父节点,并将剩余的三个item按照大小一次拆分)
    在这里插入图片描述
  3. If this results in the parent node having 4 nodes, then pop up the middle left node again, rearranging the children accordingly.
  4. Repeat this process until the parent node can accommodate or you get to the root(若根节点中也有四个item,则把左边第二个拿出来作为新的root)
    在这里插入图片描述
  • more exampel:
    在这里插入图片描述
    在这里插入图片描述

Observation: Splitting-trees have perfect balance:
If we split the root, every node gets pushed down by exactly one level.
If we split a leaf node or internal node, the height doesn’t change

The Real Name for Splitting Trees is “B Trees”

Splitting tree is a better name, but I didn’t invent them, so we’re stuck with their real name: B-trees.

  • B-trees of order L=3 (每个节点可以有三个item) are also called a 2-3-4 tree or a 2-4 tree.
    • “2-3-4” refers to the number of children that a node can have, e.g. a 2-3-4 tree node may have 2, 3, or 4 children.
  • B-trees of order L=2 are also called a 2-3 tree.

B-Trees are most popular in two specific contexts:
Small L (L=2 or L=3):
Used as a conceptually simple balanced search tree (as today).
L is very large (say thousands).
Used in practice for databases and filesystems (i.e. systems with very large records).

B-Tree Bushiness Invariants

Because of the way B-Trees are constructed, we get two nice invariants:

  • All leaves must be the same distance from the source.
  • A non-leaf node with k items must have exactly k+1 children.
  • Example: The tree given below is impossible.
    and [5 6 7]) are a different distance from the source.
    Non-leaf node [2 3] has two items but only only one child. Should have three children.
    在这里插入图片描述

These invariants guarantee that our trees will be bushy.

B-Tree Runtime Analysis

Height of a B-Tree with Limit L(L: Max number of items per node.)

L=2

  • best case
    在这里插入图片描述
  • worst case
    在这里插入图片描述

Height: Between between best and worst case is ~logL+1(N) and ~log2(N),Overall height is therefore Θ(log N).

Runtime for contains
Runtime for contains:
  • Worst case number of nodes to inspect: H(Hight)
  • Worst case number of items to inspect per node: L
  • Overall runtime: O(HL)

Since H = Θ(log N), overall runtime is O(L log N).
Since L is a constant, runtime is therefore O(log N).

Runtime for add

Runtime for add:

  • Worst case number of nodes to inspect: H + 1
  • Worst case number of items to inspect per node: L
  • Worst case number of split operations: H + 1(若在leaf增加一个item后,超过该节点能承载的最大ITEM数,需要将左边第二个节点向上移动,最坏的情况是,当所有节点中均装有L个ITEM,此时添加一个新item,会导致某个item向上移动的操作一直进行,知道出现一个新的root)
  • 在这里插入图片描述

Overall runtime: O(HL)

Since H = Θ(log N), overall runtime is O(L log N).
Since L is a constant, runtime is therefore O(log N).

Bottom line: contains and add are both O(log N).

Summary

  • BSTs have best case height Θ(log N), and worst case height Θ(N).

  • Big O is not the same thing as worst case!

  • B-Trees are a modification of the binary search tree that avoids Θ(N) worst case.

  • Nodes may contain between 1 and L items.

  • contains works almost exactly like a normal BST.

  • add works by adding items to existing leaf nodes.

  • If nodes are too full, they split.

  • Resulting tree has perfect balance. Runtime for operations is O(log N).

  • Have not discussed deletion. See extra slides if you’re curious.

  • Have not discussed how splitting works if L > 3 (see some other class).

  • B-trees are more complex, but they can efficiently handle ANY insertion order.

这篇关于B-Trees|CS 61B Data Structures, Spring 2019的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/384396

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis