B-Trees|CS 61B Data Structures, Spring 2019

2023-11-10 18:10

本文主要是介绍B-Trees|CS 61B Data Structures, Spring 2019,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B-Trees

  • B-Trees
    • BST Tree Height
    • BST(binary search tree) Performance ,Height, Depth
    • B-trees / 2-3 trees /2-3-4 trees
      • Problom with Binary search tree
      • solution:B Tree
      • The Real Name for Splitting Trees is “B Trees”
      • B-Tree Bushiness Invariants
      • B-Tree Runtime Analysis
        • Height of a B-Tree with Limit L(L: Max number of items per node.)
        • Runtime for contains
          • Runtime for contains:
          • Runtime for add
    • Summary

B-Trees

*** (Algs 424-431, 432-448 (extra))***

BST Tree Height

The difference in runtime between a worst-case tree and best-case tree is very dramati

  • Worst case: Θ(N)
  • Best-case: Θ(logN) (where N is number of nodes in the tree)
    在这里插入图片描述

the tree on the left side called “bushy”,the tree on the right hand called “spindly”(n its basically a linked list and the runtime is linear)

BigO is not equivalent to worst case! Remember, BigO is an upper bound,Thus, even though we said the worst-case runtime of a BST is Θ(N), it also falls under O(N ).(意味着runtime的增长速度小于等于N)

BST(binary search tree) Performance ,Height, Depth

  • depth: the number of links between a node and the root.
  • height: the lowest depth of a tree.
  • average depth: average of the total depths in the tree. You calculate this by taking :
    在这里插入图片描述 where d is depth and n is number of nodes at that depth.

for exampel:

在这里插入图片描述

average depth of the exampel: (0x1 + 1x2 + 2x4 + 3x6 + 4x1)/(1+2+4+6+1) = 2.35

The height of the tree determines the worst-case runtime, because in the worst case the node we are looking for is at the bottom of the tree.
The average depth determines the average-case runtime.

Random trees in the real world have Θ(log N) average depth and height.
In other words: Random trees are bushy, not spindly.but in same cases we couldn’t always insert items randomly in our tree,in other world we may get a spindly tree.

In the next chapter we will learn about a tree that always maintains its balance(always get the tree like a bushy tree)

B-trees / 2-3 trees /2-3-4 trees

Problom with Binary search tree

The problem with BST’s is that we always insert at a leaf node. This is what causes the height to increase.

假设有四个点k,v,y,z.,选择k为root,因为其余三个点均比k大,最后会形成一个bushy tree,倒是搜索一个点所需的时间是Θ(N)而不是Θ(logN)
Θ(logN)比Θ(N)要小很多
在这里插入图片描述

solution:B Tree

example for B Tree:

The process of adding a node to a 2-3-4 tree(每个点最多可以包含三个item) is:

  1. We still always inserting into a leaf node, so take the node you want to insert and traverse down the tree with it, going left and right according to whether or not the node to be inserted is greater than or smaller than the items in each node.
  2. After adding the node to the leaf node, if the new node has 4 nodes, then pop up the middle left node and re-arrange the children accordingly.(若叶子节点现在有4个item,我们因该将左边第二个item移到父节点,并将剩余的三个item按照大小一次拆分)
    在这里插入图片描述
  3. If this results in the parent node having 4 nodes, then pop up the middle left node again, rearranging the children accordingly.
  4. Repeat this process until the parent node can accommodate or you get to the root(若根节点中也有四个item,则把左边第二个拿出来作为新的root)
    在这里插入图片描述
  • more exampel:
    在这里插入图片描述
    在这里插入图片描述

Observation: Splitting-trees have perfect balance:
If we split the root, every node gets pushed down by exactly one level.
If we split a leaf node or internal node, the height doesn’t change

The Real Name for Splitting Trees is “B Trees”

Splitting tree is a better name, but I didn’t invent them, so we’re stuck with their real name: B-trees.

  • B-trees of order L=3 (每个节点可以有三个item) are also called a 2-3-4 tree or a 2-4 tree.
    • “2-3-4” refers to the number of children that a node can have, e.g. a 2-3-4 tree node may have 2, 3, or 4 children.
  • B-trees of order L=2 are also called a 2-3 tree.

B-Trees are most popular in two specific contexts:
Small L (L=2 or L=3):
Used as a conceptually simple balanced search tree (as today).
L is very large (say thousands).
Used in practice for databases and filesystems (i.e. systems with very large records).

B-Tree Bushiness Invariants

Because of the way B-Trees are constructed, we get two nice invariants:

  • All leaves must be the same distance from the source.
  • A non-leaf node with k items must have exactly k+1 children.
  • Example: The tree given below is impossible.
    and [5 6 7]) are a different distance from the source.
    Non-leaf node [2 3] has two items but only only one child. Should have three children.
    在这里插入图片描述

These invariants guarantee that our trees will be bushy.

B-Tree Runtime Analysis

Height of a B-Tree with Limit L(L: Max number of items per node.)

L=2

  • best case
    在这里插入图片描述
  • worst case
    在这里插入图片描述

Height: Between between best and worst case is ~logL+1(N) and ~log2(N),Overall height is therefore Θ(log N).

Runtime for contains
Runtime for contains:
  • Worst case number of nodes to inspect: H(Hight)
  • Worst case number of items to inspect per node: L
  • Overall runtime: O(HL)

Since H = Θ(log N), overall runtime is O(L log N).
Since L is a constant, runtime is therefore O(log N).

Runtime for add

Runtime for add:

  • Worst case number of nodes to inspect: H + 1
  • Worst case number of items to inspect per node: L
  • Worst case number of split operations: H + 1(若在leaf增加一个item后,超过该节点能承载的最大ITEM数,需要将左边第二个节点向上移动,最坏的情况是,当所有节点中均装有L个ITEM,此时添加一个新item,会导致某个item向上移动的操作一直进行,知道出现一个新的root)
  • 在这里插入图片描述

Overall runtime: O(HL)

Since H = Θ(log N), overall runtime is O(L log N).
Since L is a constant, runtime is therefore O(log N).

Bottom line: contains and add are both O(log N).

Summary

  • BSTs have best case height Θ(log N), and worst case height Θ(N).

  • Big O is not the same thing as worst case!

  • B-Trees are a modification of the binary search tree that avoids Θ(N) worst case.

  • Nodes may contain between 1 and L items.

  • contains works almost exactly like a normal BST.

  • add works by adding items to existing leaf nodes.

  • If nodes are too full, they split.

  • Resulting tree has perfect balance. Runtime for operations is O(log N).

  • Have not discussed deletion. See extra slides if you’re curious.

  • Have not discussed how splitting works if L > 3 (see some other class).

  • B-trees are more complex, but they can efficiently handle ANY insertion order.

这篇关于B-Trees|CS 61B Data Structures, Spring 2019的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/384396

相关文章

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S