图论知识——欧拉回路(一笔画问题) Hierholzer方法

2023-11-10 16:41

本文主要是介绍图论知识——欧拉回路(一笔画问题) Hierholzer方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

许多题目看起来是模拟,其实应该抽象为数学模型,寻找效率更高的解题方法
前置知识
欧拉回路不等于欧拉路径,AB BC CA构成欧拉环路ABCA,符合题意。AB BC CD构成欧拉路径ABCD,也符合题意。
https://blog.csdn.net/qq_34454069/article/details/77779300
https://blog.csdn.net/qq632544991p/article/details/51097077
题目:https://www.luogu.org/problemnew/show/P1341
题解
https://blog.csdn.net/stillxjy/article/details/51956183
https://blog.csdn.net/binling/article/details/51742845
https://blog.csdn.net/binling/article/details/51742845
Hierholzer :
在本题中,n个无序字母对构成n+1长度的欧拉回路或欧拉字母对,那么只要通过度来判定是欧拉回路或者欧拉路径,那么只要找到起始点就一定可以简单的通过DFS找出该路径。
写法一:

#include<bits/stdc++.h>
using namespace std;
int a[106],c[10006],du[101],n,x,y,k,t,tot=0;
bool b[106][106];
char s[2];
void dfs(int u){for(int i=0;i<58;i++)if(b[u][i]){b[u][i]=b[i][u]=0;//删边 dfs(i);}c[++tot]=u;//递归退栈时存储,所以顺序是反的,也可以用栈 
}
int main(){cin>>n;k=0xfffffff;//重要赋值 for(int i=1;i<=n;i++){cin>>s;x=s[0]-'A'; y=s[1]-'A';//节省空间 k=min(k,min(x,y));b[x][y]=b[y][x]=1;//无向图标记路径 du[x]++;du[y]++;//计算度 }for(int i=0;i<58;i++)if(du[i]&1) a[++a[0]]=i;//计算度是奇数的点,并保存 if(a[0]==0) dfs(k);//题目要求输出字典序最小的方案 
//没有度为奇数的点 ,这是欧拉环路的情况 else if(a[0]==2) dfs(a[1]);//第一个度为奇数的点是端点 
//度为奇数的点为两个,这两个是两端的端点,这是欧拉路径的情况else{cout<<"No Solution\n";return 0;//必须有这个返回 }for(int i=tot;i>=1;i--) printf("%c",c[i]+'A');//for(int i=tot;i>=1;i--) cout<<c[i]+'A';//输出不规范,要用格式化输出return 0;
}

在这里插入图片描述
写法二:

#include<bits/stdc++.h>
using namespace std;
int n,x,y,k,i,ss=0;
bool b[106][106];
char s[2];
int cnt[106]={0};
stack<int> c;
void dfs(int u){for(int i=0;i<58;i++)if(b[u][i]){b[u][i]=b[i][u]=0;//删边 dfs(i);}c.push(u);//递归退栈时存储,所以顺序是反的,也可以用栈 
}
int main(){cin>>n;k=0xfffffff;//重要赋值 vector<int> cnt(106,0);//变长数组的赋值 for(int i=1;i<=n;i++){cin>>s;x=s[0]-'A'; y=s[1]-'A';//节省空间 k=min(k,min(x,y));b[x][y]=b[y][x]=1;//无向图标记路径 cnt[x]^=1;cnt[y]^=1;
//利用异或运算,同0异1,运算偶数次是0,运算奇数次是1 }for(i=0;i<106;i++) if(cnt[i]) ss++; 
//要对所有的点进行遍历,ss是度为奇数的点的个数 if(ss&&ss!=2){
//条件取反:ss=0||s=2,即欧拉回路的情况和欧拉路径的情况 cout<<"No Solution\n";return 0;//必须有这个返回 }for(i=0;i<106;i++)if(cnt[i]) break; if(i==106) dfs(k);
//没有度为奇数的点,及该情况是欧拉回路 ,k保证最小字典序 else dfs(i); //该情况是欧拉路径 ,也能保证最小字典序 while(!c.empty()){printf("%c",c.top()+'A');c.pop();}cout<<endl;return 0;
}

在这里插入图片描述

这篇关于图论知识——欧拉回路(一笔画问题) Hierholzer方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/383959

相关文章

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

MySQL底层文件的查看和修改方法

《MySQL底层文件的查看和修改方法》MySQL底层文件分为文本类(可安全查看/修改)和二进制类(禁止手动操作),以下按「查看方法、修改方法、风险管控三部分详细说明,所有操作均以Linux环境为例,需... 目录引言一、mysql 底层文件的查看方法1. 先定位核心文件路径(基础前提)2. 文本类文件(可直

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景