惊魂48小时,阿里工程师如何紧急定位线上内存泄露?

2023-11-10 14:10

本文主要是介绍惊魂48小时,阿里工程师如何紧急定位线上内存泄露?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读:云计算场景下的大规模分布式系统中,网络异常、磁盘IO异常、时钟跳变、操作系统异常乃至软件本身可能存在bugs等,均给分布式系统正确运行带来了挑战。持续的监控报警完善是打造稳定高可用分布式系统过程中非常重要的工作,这个也就要求我们研发同学从细节处入手,本文将介绍的场景是针对线上报警的一丝异常,抽丝剥茧找到内存泄露的root cause,全程48小时,跟进修复了潜在风险隐患,并进一步丰富完善监控报警体系的过程。

1、问题初现

该风险隐患在2019年10月下旬某天开始浮现,不到24小时的时间里,值班同学陆续收到多个线上电话报警,显示某业务集群中分布式协调服务进程异常:

  • 14:04:28,报警显示一台Follower意外退出当前Quorum,通过选举重新加入Quorum;

  • 16:06:35,报警显示一台Follower发生意外重启,守护进程拉起后,重新加入Quorum;

  • 02:56:42,报警显示一台Follower发生意外重启,守护进程拉起后,重新加入Quorum;

  • 12:21:04,报警显示一台Follower意外退出当前Quorum,通过选举重新加入Quorum;

  • ……

下图展示了该分布式协调服务的系统架构,后端是基于Paxos实现的一致性维护功能模块,前端代理客户端与一致性服务单元的通信,支持服务能力水平扩展性。由于后端分布式一致性服务单元由5台Master机器组成,可以容忍同时2台机器挂掉,因此上述报警均没有发现对服务可用性产生影响。但是,在短时间之内频繁发生单个Master服务进程异常,这个对于服务稳定性是个极大隐患,特别是对于作业调度强依赖分布式协调服务的某业务。由此,我们开始集中人力重点调查这个问题。

我们首先排除了网络问题,通过tsar命令查看机器上网络各项指标正常,通过内部的网络平台查看机器上联网络设备以及网络链路也均是健康状态。回到日志来分析,我们从Leader日志中找到了线索,上述报警时间点,均有“Leader主动关闭了与Follower的通信通道”这么一个事件。

很自然地,我们想知道为什么会频繁发生Leader关闭与Follower通信通道的事件,答案同样在日志中:Follower长时间没有发送请求给Leader,包括Leader发给过来的心跳包的回复,因此被Leader认定为异常Follower,进而关闭与之通信通道,将其踢出当前Quorum。

好了,现在可以直观地解释触发报警原因了:Follower长时间与Leader失联,触发了退出Quorum逻辑(如果退出Quorum过程比较慢的话,进一步会触发直接退出进程逻辑,快速恢复)。

那么新的问题来了,这些Followers为什么不回复轻量的心跳请求呢?这次没有直接的日志来解答我们的疑惑,还好,有间接信息:出问题前Follower的日志输出发生了长时间的中断(超过了触发退出Quorum的阈值),这个在对分布式协调服务有着频繁请求访问的某业务集群中几乎是不可想象的!我们更愿意相信后端进程hang住了,而不是压根没有用户请求打过来。

在没有其它更多调查思路的情况下,基于后端分布式一致性服务单元是基于java实现的事实,我们查看了Follower发生问题时间段的gc日志,结果找到了原因:java gc相关的ParNew耗时太久(当天日志已经被清理,下图是该机器上的类似日志),我们知道java gc过程是有个STW(Stop-The-World)机制的,除了垃圾收集器,其余线程全部挂起,这个就能够解释为什么后端Follower线程会短时hang住。

虽然我们的java程序申请的初始内存较大,但是实际分配的是虚拟内存,ParNew耗时太久一个很大可能性是机器上实际物理内存不足了。

按照这个思路,我们进一步在Follower机器上使用top命令查看进程内存占用情况,结果发现机器上混合部署的前端Proxy进程使用的内存已经达到整机66%+(此时后端一致性进程实际占用的物理内存也已经达到30%左右)。

进一步查看系统日志,发现部分机器上前端Proxy进程已经发生过因为内存不足的OOM错误而被系统KILL的事件,至此问题初步定位,我们开始转向调查前端Proxy内存泄露的问题。

2、业务风险

该业务对分布式协调服务的服务发现功能是重度依赖的。以本次调查的业务集群为例,单集群注册的服务地址数达到240K,解析地址的活跃会话数总量达到450W,因此,分布式协调服务的稳定性直接影响着集群内业务作业的健康运行。

在明确了分布式协调服务Proxy进程存在内存泄露风险之后,我们紧急巡检了线上其它集群,发现该问题并非个例。大促在即,这个风险隐患不能够留到双十一的时间点,在gcore了前端Proxy现场之后,我们做了紧急变更,逐台重启了上述风险集群的前端Proxy进程,暂且先缓解了线上风险。

3、深入调查

继续回来调查问题,我们在重启Proxy进程之前,gcore保留了现场(这里要强调一下,线上gcore一定要谨慎,特别是内存占用如此大的进程,很容易造成请求处理hang住,我们基于的考虑是该分布式协调服务的客户端是有超时重试机制的,因此可以承受一定时长的gcore操作)。

因为前端Proxy最主要的内存开销是基于订阅实现的高效地址缓存,因此,我们首先通过gdb查看了维护了缓存的unordered_map大小,结果这个大小是符合预期的(正如监控指标显示的,估算下来这个空间占用不会超过1GB),远远达不到能够撑起如此内存泄漏的地步。这点我们进一步通过strings core文件也得到了证实,string对象空间占据并不多,一时间,我们的调查陷入了困境。

这时我们想到了兄弟团队某大神的大作,介绍了在线上环境调查C/C++应用程序内存泄露问题(可能会有同学提到valgrind这个工具干嘛不用?首先这个神器在测试环境是必备的,但是终究是可能存在一些漏掉的场景发布上线了导致线上内存泄露。另外,大型项目中会暴露valgrind运行太慢的问题,甚至导致程序不能正常工作),这里提供了另一个角度来调查内存泄露:虚表。每个有虚函数的类都有个虚表,同一个类的所有对象都会指针指向同一个虚表(通常是每个对象的前8个字节),因此统计每个虚表指针出现的频度就可以知道这样的对象被分配了有多少,数量异常的话那么就存在内存泄露的可能。

大神提供了一个内存泄露排查工具(说明一下,这个工具基于规整的tcmalloc的内存管理方式来分析的),通过符号表找到每个vtable,因此可以知道虚表地址,即每个虚函数类的对象前8字节的内容,这个工具厉害的地方在于摆脱了gdb依赖,直接根据应用程序申请的所有内存块分析,找到所有泄露内存块地址,进一步统计出每个虚表对应类的对象数目。具体这个工具实现细节不再赘述,最终我们统计出来的所有出现频率超过10W的虚表信息,找到了罪魁祸首:这个common::closure的对象泄露了高达16亿+。

根据closure的参数类型信息,我们很快定位到了具体的类CheckCall:

$grep Closure -r  proxy | grep Env

proxy/io_handler.h:    typedef common::Closure<void, Env*>  CheckCall;

有关这个对象的大面积泄露,定位到最终原因其实是跟我们对Proxy日志分析有关,我们在日志中发现了大量非法访问请求:客户端尝试解析某个角色注册的服务地址,但是却使用错误的集群名参数。在单个Proxy机器上1s时间里最多刷出4000+这样的错误日志,那么会不会是因为持续走到这样错误路径导致的对象内存泄露呢?

对照这块的代码,我们仔细研究了一下,果然,CheckCall对象正常是会走到执行逻辑的(common::closure在执行之后自动会析构掉,释放内存),但是在异常路径下,譬如上面的非法集群名,那么这个函数会直接return掉,相应的CheckCall对象不会被析构,随着业务持续访问,也就持续产生内存泄露。

4、风险修复

这个问题的rootcause定位之后,摆在我们面前的修复方法有两个:

1)业务方停止错误访问行为,避免分布式协调服务前端Proxy持续走到错误路径,触发内存泄露;

2)从前端Proxy代码层面彻底修复掉这个bug,然后对线上分布式协调服务Proxy做一轮升级;

方案二的动静比较大,大促之前已经没有足够的升级、灰度窗口,最终我们选择了方案一,根据日志中持续出现的这个非法访问路径,我们联系了业务方,协助调查确认业务哪些客户端进程在使用错误集群名访问分布式协调服务,进一步找到了原因。最终业务方通过紧急上线hotfix,消除了错误集群名的访问行为,该业务线分布式协调服务前端Proxy进程内存泄露趋势因此得以控制,风险解除。

当然,根本的修复方式还是要从前端Proxy针对CheckCall的异常路径下的处理,我们的修复方式是遵循函数实现单一出口原则,在异常路径下也同样执行该closure,在执行逻辑里面判断错误码直接return,即不执行实际的CheckCall逻辑,只触发自我析构的行为。该修复在双十一之后将发布上线。

5、问题小结

稳定性工作需要从细节处入手,需要我们针对线上服务的每一条报警或者是服务指标的一丝异常,能够追根溯源,找到root cause,并持续跟进风险修复,这样一定可以锤炼出更加稳定的分布式系统。“路漫漫其修远兮,吾将上下而求索”,与诸君共勉。


http://www.taodudu.cc/news/show-8205684.html

相关文章:

  • 夜半菜鸟惊魂
  • 惊魂时刻!技术生涯中遇到的最让你担惊受怕的事件是什么?
  • linux邮箱系统sendmail惊魂
  • Ceph对象存储运维惊魂72小时(上)
  • 电梯惊魂
  • ERP顾问出差遇险记(二).酒店夜半电话惊魂
  • 机房惊魂记
  • ERP顾问出差遇险记(二).酒店夜半电话惊魂
  • 《炬丰科技-半导体工艺》湿式手动清洗工艺与二氧化碳清洗工艺的比较
  • 青霉素和污水过程机理介绍
  • 电厂湿法脱硫消泡剂这么受欢迎也不是没有道理的
  • 不用工业污水厂处理消泡剂,你可能一直不知道它的好!
  • 农村污水处理消泡剂是保持乡村美丽的基础
  • 是什么让水处理的进度变快?不是水处理厂用消泡剂,而是工业废水处理用消泡剂
  • 显影液消泡剂:显影液起泡的注意了
  • OMG!造纸废水处理用消泡剂竟然这么好!买它
  • c/c++程序编译连接过程
  • windows_eclipse下搭建PhoneGap环境来开发Android程序
  • 18.8.23工作心得
  • 正确使用计算机进行语文教学设计,写作《使用恰当的说明方法》教学设计2
  • python 在pycharm中 爬虫
  • APL 是 A Programming Language 或 Array Processing Language 的缩写。
  • 追忆似水年华-----忆高中室友
  • 表空间、数据文件和控制文件(Oracle概念翻译) .
  • SSM框架(Spring,SpringMVC,MyBatis)
  • 个人首次使用UniAPP使用注意事项以及踩坑
  • 72分才能晋级CSP-J/S的S组,太难了(含最新22省晋级分数线)
  • CSP-J/S晋级线:最高的竟不是浙江和江苏?1省还未公布分数线
  • 得到听书vip七天试用总结
  • 你喜欢,我坚持
  • 这篇关于惊魂48小时,阿里工程师如何紧急定位线上内存泄露?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/383164

    相关文章

    Python如何使用__slots__实现节省内存和性能优化

    《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

    Redis 内存淘汰策略深度解析(最新推荐)

    《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

    Golang基于内存的键值存储缓存库go-cache

    《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

    mysql线上查询之前要性能调优的技巧及示例

    《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

    Go使用pprof进行CPU,内存和阻塞情况分析

    《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

    golang内存对齐的项目实践

    《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

    Linux内存泄露的原因排查和解决方案(内存管理方法)

    《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

    Java循环创建对象内存溢出的解决方法

    《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

    大数据小内存排序问题如何巧妙解决

    《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

    Redis多种内存淘汰策略及配置技巧分享

    《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe