音视频基础及海思sample_venc解读

2023-11-10 11:30

本文主要是介绍音视频基础及海思sample_venc解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、sample的整体架构

(1)sample其实是很多个例程,所以有很多个main

(2)每一个例程面向一个典型应用,common是通用性主体函数,我们只分析venc

(3)基本的架构是:venc中的main调用venc中的功能函数,再调用common中的功能函数,再调用mpp中的API,再调用HI3518E内部的硬件单元。

(4)sample的配置和编译,重点注意很多环境变量,目录结构不要乱动。

2、sample代码学习的关键

(1)得理解很多基础概念,譬如图像采集原理、模拟数字、通道、绑定、组、视频缓冲池、在线/离线模式等等

(2)得从宏观上理解整个视频采集、内部传递、处理、编码输出、网络传输等的过程。

(3)得反复看代码,熟才能生巧,才能帮助理解整个代码。

(4)得查阅mpp手册,熟悉海思这一套API的规矩和一般用法。

3、sample_venc的大体分析

(1)从main入手,main的传参分析

(2)几个重要的基本概念:

H.264 H.265 MJPEG 视频编码规范标准

1080P、720P、VGA、D1 视频分辨率(清晰度)

fps(frame per second) 帧率:每秒多少帧

4、图像像素格式深度理解

4.1、颜色的学问

(1)颜色是主观还是客观存在?是主观存在的,颜色的本质是光的波长,这些不同波长的光映射到人的眼中就成了不同的颜色,正因为有人去看才有了颜色这个概念

(2)颜色的三个关键:亮度、色度、饱和度

(3)人的眼睛并非理想完美的颜色识别器件,图像表达也有清晰度和质量高低的差异

(4)科学研究如何定义(或者表达、记录、计算)一种颜色?色彩空间的概念

色彩空间:如何用数字表达一种颜色,例如rgb888,rgb565等

4.2、rawRGB和图像采集过程

(1)图像采集的过程:光照在成像物体被反射->镜头汇聚->Sensor光电转换->ADC为rawRGB

光照到成像物体上被反射到镜头汇聚起来传到焦点,Sensor就在焦点处,Sensor是一个平面,被分成很多区域,每一个最小区域就是一个像素,这一路像素就是一路单独的光电转换器,转出来的电信号是一个模拟值,光照到每个像素上就生成了这个像素的模拟电压。

Sensor有个参数叫做分辨率,或者说叫做像素个数,比如买手机时经常说多少w像素,指的就是这里的意思。

这些模拟电信号再由ADC转换成数字的电信号(rawRGB)

(2)sensor上每个像素只采集一种颜色的光,因此sensor每个像素只能为R或G或B

也就是说手机摄像头上一个像素点是rgb的一个颜色。

而手机的LCD显示屏,一个像素点里面有三个小灯,rgb。
​​在这里插入图片描述

​​也就是说光电转换只能转换一种颜色分量,不可能一个点转换R、G、B三种分量。

(3)rawRGB和RGB都是用来描述图像的,图像采集时RGB是由rawRGB计算而来的

由rawRGB进行联合附近的分量进行加权平均计算得到RGB

(4)因为图像颜色本身有一定连贯性,而且人眼是非理想的,因此图像采集和再显示给人这整个构成中有三个要素:sensor分辨率、pitch(两个像素点中心的距离)、观看距离

(5)如果是视频,质量好坏还要加上帧率framerate

(6)图像的表达、压缩、修整等相关技术,就发生在rawRGB进来以后的各个环节

表达:rgb565、rgb888、1080p等

压缩:bmp、jpg、png等

修整:锐化、曝光等

5、RGB和YUV详解

5.1、RGB方式表示颜色

(1)RGB有RGB565和RGB888,ARGB等多种子分类

(2)RGB的本质:将色度分解为R、G、B三部分,然后记录下亮度数据,也就是说RGB没有记录颜色的色度,色度是固定的红绿蓝。

(3)RGB的优势:方便数字化表达,广泛用于数字化彩色显示器,计算机编程等领域。

(4)RGB的劣势:和传统的灰度图兼容不好,表达颜色的效率不高

灰度图只有亮度,没有颜色,而RGB又默认分解成三种基色,所以会兼容不好

5.2、YUV

(1)YUV是一种色彩空间,Y表示亮度,U和V表示色度。只有Y就是黑白图像,也就是灰度图,再加上UV就是彩色图像了。YUV的一个好处就是让彩色系统和传统黑白系统很好的兼容。

(2)YUV和RGB的相同点是:都是用来表达颜色的数学方法;不同点是:对颜色的描述思路和方法不同。RGB将一个颜色拆解为3个纯色的亮度组合,YUV将一个颜色分解为一个亮度和2个色度的组合。

(3)RGB和YUV之间可以用数学方法互相换算,是个典型的浮点运算过程。

(4)YUV和YCbCr几乎可以看做一个概念,详细的区分以后再去慢慢体会。

(5)YUV格式分为packed和planar两种。具体参考:http://blog.csdn.net/sunnylgz/article/details/7580628
​​在这里插入图片描述
(6)有多种YUV相关的概念需要弄清楚(以下均为planar格式)

YUV

YUV422(YUYV)

YUV420(YUV411)

YUV422 planar(YUV422P)

[Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8],[U1,U2,U3,U4],[V1,V2,V3,V4]

YUV420 Planar(YUV420P)

[Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8],[U1,U2],[V1,V2]

YUV422 semi planar(YUV422SP)

[Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8],[U1,V1],[U2,V2],[U3,V3],[U4,V4]

YUV420 semi Planar(YUV420SP)

[Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8],[U1,V1],[U2,V2]

参考:http://blog.csdn.net/bingqingsuimeng/article/details/50716390
和https://www.2cto.com/kf/201303/198023.html

6、海思MPP功能模块和视频缓存池

6.1、MPP功能模块框图

(1)找到MPP手册

麦克风声电转换AD转换采样-》AI音频输入并降噪-》AENC编码-》音频码流

音频码流-》ADEC解码-》AO音频输出-》喇叭放大

镜头-》Sensor光电转换得到模拟电信号-》AD转换得到rawRGB-》VI视频输入-》VPSS接收并输出多路分辨率不同的图像-》VENC编码成H.264码流

(2)详见系统概述1.3部分
在这里插入图片描述

6.2、sample中SAMPLE_VENC_1080P_CLASSIC函数开始看

(1)PAYLOAD_TYPE_E

(2)PIC_SIZE_E

(3)VB_CONF_S

7、视频缓存池

7.1、什么是视频缓冲池

(1)视频的本质是多帧图片,图片的本质是RGB或rawRGB数据,要占用一段连续内存

(2)视频的裁剪、缩放、修正处理(马赛克)等各种操作,本质上就是对内存中的数据进行运算

(3)视频缓存池(VB, video buffer)就是一段很大,又被合理划分和管理的内存,用来做视频数据的暂存和运算场地

(4)公共视频缓存池的公共2字,可以理解为全局变量,也就是各个模块都能访问的一段内存

(5)看似视频缓存块在各个模块之间流转,实际上并没有内存复制,而是指针在传递

(6)视频缓存池的内存由MPP来维护,我们在系统启动时就把整个SDRAM分成了2部分:系统部分(由linux kernel来维护管理)和mpp部分(由mpp系统来维护管理)

(7)缓存池需要几个,每个中包含几个缓存块,每个缓存块多大,都是可以由用户程序设置好参数,然后调用MPP的相应API来向MPP申请分配的。

7.2、相关的数据结构和API

(1)VB_CONF_S结构体
在这里插入图片描述
(2)HI_MPI_VB_SetConf
(3)HI_MPI_VB_Init

8、VI部分 知识要点

(1)常用Sensor的接口有三种:MIPI、LVDS、DC
(2)WDR宽动态:一副图像里面,局部曝光和其它地方是不一样的
(3)isp就是image signal process,图像信号处理。
(4)HI3518E内部的ISP单元是隶属于VI模块的。VI模块就包含3大部分:第一部分是和Sensor对接的部分(Sensor是什么接口的,mipi,dc等,怎么去操作),第二部分就是ISP,第三部分就是VI dev和channel
dev:就是用来采集图像的一个硬件单元

9、VPSS部分 知识要点

9.1、VPSS的手册部分解读

VI/VPSS 离/在线模式
VI 和 VPSS 的协作模式分为以下 2 种(模式切换由 load 脚本参数控制,对应 sys 模块
参数 vi_vpss_online):

VI/VPSS 离线模式是指 VI 进行时序解析后将图像数据写出到 DDR,VPSS 从
DDR 中载入 VI 采集的数据进行图像处理,是传统 Hi3518/Hi3520D 等芯片的
VI/VPSS 的协作模式。

VI/VPSS 在线模式是指 VI 进行时序解析后直接在芯片内部将数据传递到 VPSS,
中间无 DDR 写出的过程。在线模式可以省一定的带宽和内存,降低端到端的延
时。需要注意的是,在线模式时,因为 VI 不写出数据到 DDR,无法进行
CoverEx、OverlayEx、Rotate、LDC 等操作,需要在 VPSS 各通道写出后再进行
Rotate/LDC 等处理,而且有些功能只在离线下能支持,比如 DIS。

总结:
离线模式:公共视频缓冲池-》VI模块处理缓冲池那一份-》复制到DDR-》VPSS处理DDR中的那一份
在线模式:公共视频缓冲池-》VI模块处理缓冲池那一份-》VI模块将缓冲池的指针传递给VPSS,VPSS处理缓冲池中的那一份

10、VENC部分 知识要点

有了以上,VENC部分代码就很简单

学习博文:

LCD常用接口:
https://blog.csdn.net/wocao1226/article/details/23870149

yuv格式:
http://blog.csdn.net/sunnylgz/article/details/7580628
http://blog.csdn.net/bingqingsuimeng/article/details/50716390
https://www.2cto.com/kf/201303/198023.html

图像编码原理:
http://blog.csdn.net/newchenxf/article/details/51693753

Qp:
http://blog.csdn.net/u013354805/article/details/51988171

VI、VPSS、VENC数据流向图

​​在这里插入图片描述

海思示例代码 函数调用关系

sample_venc.c
mainSAMPLE_VENC_1080P_CLASSICSAMPLE_COMM_VI_GetSizeBySensor(step1)		//获取Sensor采集图像的大小---》720PSAMPLE_COMM_SYS_CalcPicVbBlkSize			//计算缓冲块大小---》1280 * 768 * 1.5+HeaderSize		1.5是yuv420图像中一个像素的大小SAMPLE_COMM_SYS_GetPicSize		//获取Sensor图像的大小---》1280 * 720VB_PIC_HEADER_SIZE			//计算图像头的大小---》HeaderSize	SAMPLE_COMM_SYS_Init(step2)			//MPP系统初始化HI_MPI_SYS_Exit				//去除 MPP 系统。禁用一切模块HI_MPI_VB_Exit				//去除 MPP 视频缓存池HI_MPI_VB_SetConf				//设置 MPP 视频缓存池属性---》最大缓冲池个数为128,实际缓冲池个数为16,每个缓冲块的大小和个数HI_MPI_VB_Init				//初始化 MPP 视频缓存池HI_MPI_SYS_SetConf				//配置系统控制参数---》64字节对齐HI_MPI_SYS_Init				//初始化 MPP 系统SAMPLE_COMM_VI_StartVi(step3)			//启动vi dev & CHN进行捕获IsSensorInput				//传感器输入是 电视或SensorSAMPLE_COMM_VI_StartIspAndVi		//启动IspSAMPLE_COMM_VI_StartMIPI(1//mipi接口的配置---》3.3VSAMPLE_COMM_VI_SetMipiAttr				//mipi接口的配置fd = open("/dev/hi_mipi", O_RDWR);				//打开mipi的设备文件ioctl(fd, HI_MIPI_SET_DEV_ATTR, pstcomboDevAttr)		//应用层操作Sensor的驱动,对Sensor做一些必要的初始化SAMPLE_COMM_ISP_Init(2//配置传感器和ISP(包括WDR宽动态模式)。  目的是启动3518e芯片内部的ISP单元sensor_register_callback	//传感器寄存器回调HI_MPI_AE_Register		//注册AE库,自动曝光HI_MPI_AWB_Register	//注册AWB库,自动白平衡HI_MPI_AF_Register		//注册AF库,自动对焦HI_MPI_ISP_MemInit	//初始化 ISP 外部寄存器HI_MPI_ISP_SetWDRMode	//设置 ISP 宽动态的模式---》不启用HI_MPI_ISP_SetPubAttr	//配置 ISP 属性---》rawRGB的排列顺序---GRBG、帧率为30、图像区域的起始点、图像区域的宽和高HI_MPI_ISP_Init		//初始化ISP系统SAMPLE_COMM_ISP_Run(3//运行isp线程  pthread_create(&gs_IspPid, &attr, (void* (*)(void*))Test_ISP_Run, NULL)	//创建线程Test_ISP_Run		//线程函数HI_MPI_ISP_Run	//开始运行ISP系统SAMPLE_COMM_VI_StartDev(4//配置并打开DevHI_MPI_VI_SetDevAttr	//配置 Dev的属性---》接口模式为DC,单路工作方式,图像的扫描模式是逐行扫描,转换成yuv420,使用内部ISP,输入数据类型为RGB,不启用数据逆向HI_MPI_ISP_GetWDRMode	//获取 ISP 宽动态模式HI_MPI_VI_SetWDRAttr	//配置 WDR宽动态模式的 工作属性---》都不开启HI_MPI_VI_EnableDev	//启用DevSAMPLE_COMM_VI_StartChn(5//配置并打开通道chn(最多1个)HI_MPI_VI_SetChnAttr	//设置 VI 通道chn属性---》通道支持的图像属性是720P,像素存储格式是yuv420sp,原始图像不镜像不翻转,不进行帧率控制,不压缩HI_MPI_VI_SetRotate	//设置 VI 图像旋转属性--》图像从通道中出来后的旋转角度---不旋转HI_MPI_VI_EnableChn	//启用通道chn			SAMPLE_COMM_SYS_GetPicSize(step4)		//获取Sensor图像的大小---》1280 * 720SAMPLE_COMM_VPSS_StartGroup			//启动VPSS的GroupHI_MPI_VPSS_CreateGrp			//创建GroupHI_MPI_VPSS_GetNRParam			//获取 vpss 3DNR 参数HI_MPI_VPSS_SetNRParam			//设置 vpss 3DNR 参数HI_MPI_VPSS_StartGrp			//启用GroupSAMPLE_COMM_VI_BindVpss				//Group绑定VI模块中的Dev0中的chn0SAMPLE_COMM_VI_Mode2Param		//获取VI的参数---》是有1个Dev和chnHI_MPI_SYS_Bind				//VI通道chn0 绑定 vpss组Group0SAMPLE_COMM_VPSS_EnableChn			//在Group内部创建几路自己所用的chnHI_MPI_VPSS_SetChnAttr			//设置 VPSS 通道属性---》不进行帧率控制HI_MPI_VPSS_SetChnMode			//设置 VPSS 通道工作模式---》VPSS通道工作模式为USER模式,目标图像的像素格式是yuv420sp,目标图像的宽度是720,目标图像的高是1280,设置 256byte 段式压缩HI_MPI_VPSS_EnableChn			//打开chnSAMPLE_COMM_VENC_Start(step5)			//启动venc流模式(h264, mjpeg)  SAMPLE_COMM_SYS_GetPicSize		//获取Sensor图像的大小---》1280x720HI_MPI_VENC_CreateChn			//创建VENC chn---》编码通道的宽度是720、高度是1280,要编码的图片的宽度是720、高度是1280,流缓冲区的大小是1280x720,编码出的视频流的图像质量是高清还是啥啥,获取流的模式是切片模式,不支持B帧,设置码率控制模式:CBR、FIXQF、VBR,以及码率控制相关的参数;HI_MPI_VENC_StartRecvPic			//开始接收图片SAMPLE_COMM_VENC_BindVpss			//VENC的Dev绑定VPSS的chnHI_MPI_SYS_Bind				//VENC的Dev绑定VPSS的chnSAMPLE_COMM_VENC_StartGetStream(step6)		//获取流,然后将其保存到文件。 SAMPLE_COMM_VENC_GetVencStreamProc	//线程函数HI_MPI_VENC_GetChnAttr		//获取编码通道的编码属性。SAMPLE_COMM_VENC_GetFilePostfix	//获取文件名后缀--->.h.264HI_MPI_VENC_GetFd		//mpp内部把VENC编码好的视频流数据做成文件,然后把文件描述符通过这个API获取HI_MPI_VENC_Query		//查询编码通道状态---》判断当前这帧图像的码流包个数是否为0,为0则退出程序HI_MPI_VENC_GetStream		//获取编码码流。SAMPLE_COMM_VENC_SaveStream	//将帧保存到文件SAMPLE_COMM_VENC_SaveH264fwriteHI_MPI_VENC_ReleaseStream		//释放码流缓存。SAMPLE_COMM_VENC_StopGetStream(step7)		//退出程序

这篇关于音视频基础及海思sample_venc解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382380

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组