FCOS难点记录

2023-11-10 02:36
文章标签 记录 难点 fcos

本文主要是介绍FCOS难点记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
FCOS 中有计算 特征图(Feature map中的每个特征点到gt_box的左、上、右、下的距离)

1、特征点到gt_box框的 左、上、右、下距离计算

		x = coords[:, 0] # h*w,2   即 第一列y = coords[:, 1] l_off = x[None, :, None] - gt_boxes[..., 0][:, None, :]  # [1,h*w,1]-[batch_size,1,m]-->[batch_size,h*w,m]t_off = y[None, :, None] - gt_boxes[..., 1][:, None, :]r_off = gt_boxes[..., 2][:, None, :] - x[None, :, None]b_off = gt_boxes[..., 3][:, None, :] - y[None, :, None]ltrb_off = torch.stack([l_off, t_off, r_off, b_off], dim=-1)  # [batch_size,h*w,m,4]areas = (ltrb_off[..., 0] + ltrb_off[..., 2]) * (ltrb_off[..., 1] + ltrb_off[..., 3])  # [batch_size,h*w,m]off_min = torch.min(ltrb_off, dim=-1)[0]  # [batch_size,h*w,m]off_max = torch.max(ltrb_off, dim=-1)[0]  # [batch_size,h*w,m]

根据上边的画的图可以看出,假设对应的 feature map 大小为 2x2,stride=4,原始图片为8x8。将特征图中的每个特征点映射回去,可以得到相应的 4个(h*w个)坐标。对应图中的 红色a,绿色b,黄色c和蓝色d的点。

print(x,"\n",y,x.shape)
'''
tensor([2., 6., 2., 6.]) 
tensor([2., 2., 6., 6.]) torch.Size([4])
'''print(x[None,:,None]) # [1,4,1]
'''
tensor([[[2.],[6.],[2.],[6.]]]) 
'''print(gt_boxes) # [1,2,4]  batch=1, 两个框,每个框左上角和右下角坐标
'''
tensor([[[5, 4, 7, 6],[1, 1, 4, 6]]])
'''print(gt_boxes[...,0],gt_boxes[...,0][:,None,:])
''' 
tensor([[5, 1]]) tensor([[[5, 1]]])
'''
l_off = [2,2]-[5,1]=[-3,1]  以此类推print(l_off,"\n", l_off.shape)'''
**第一列代表,所有的点abcd横坐标与第一个框的左边偏移量。第二列代表到第二个框的偏移量**
tensor([[[-3.,  1.],[ 1.,  5.],[-3.,  1.],[ 1.,  5.]]]) torch.Size([1, 4, 2])'''print(ltrb_off)
'''
第一列代表,所有的投影点abcd,到两个框的左边偏移量。第一行第二行分别代表两个框。
tensor([[[[-3., -2.,  5.,  4.], # a 点到第一个框的左边、上边、右边、下边的偏移[ 1.,  1.,  2.,  4.]], # a 点到第二框的左边、上边、右边、下边的偏移[[ 1., -2.,  1.,  4.], # b 点到第一个框的左边、上边、右边、下边的偏移[ 5.,  1., -2.,  4.]],[[-3.,  2.,  5.,  0.],[ 1.,  5.,  2.,  0.]],[[ 1.,  2.,  1.,  0.],[ 5.,  5., -2.,  0.]]]]) torch.Size([1, 4, 2, 4]) #[batch_size,h*w,m,4]
'''print(ltrb_off[...,0])
'''tensor([[[-3.,  1.],[ 1.,  5.],[-3.,  1.],[ 1.,  5.]]]) torch.Size([1, 4, 2])
'''print(areas)
'''
areas: tensor([[[ 4., 15.],[ 4., 15.],[ 4., 15.],[ 4., 15.]]])
'''torch.return_types.min(
values=tensor([[[-3.,  1.],[-2., -2.],[-3.,  0.],[ 0., -2.]]]),
indices=tensor([[[0, 0],[1, 2],[0, 3],[3, 2]]])) torch.return_types.max(
values=tensor([[[5., 4.],[4., 5.],[5., 5.],[2., 5.]]]),
indices=tensor([[[2, 3],[3, 0],[2, 1],[1, 0]]]))

2、确定该特征点在哪一个框内,是否在该FPN特征层进行尺寸判断并进行后续预测

off_min = torch.min(ltrb_off, dim=-1)[0]  # [batch_size,h*w,m] # off_min 找出所有 特征点  到 每个框的 四条边 最小的距离
off_max = torch.max(ltrb_off, dim=-1)[0]  # [batch_size,h*w,m]  #off_max 找出所有 特征点  到 每个框的 四条边 最大的距离mask_in_gtboxes = off_min > 0
mask_in_level = (off_max > limit_range[0]) & (off_max <= limit_range[1]) # 锁定在这个limit range上的所有的特征的点	
print("ltrf_off",ltrb_off)
print("off_min",off_min,"\n","off_max",off_max)
print("mask_in_gtboxes-->",mask_in_gtboxes)
print("mask_in_level-->",mask_in_level)'''
ltrf_off tensor([[[[-3., -2.,  5.,  4.], # a 点到第一个框的左边、上边、右边、下边的偏移[ 1.,  1.,  2.,  4.]],  # a 点到第二个框的左边、上边、右边、下边的偏移[[ 1., -2.,  1.,  4.], # b 点到第一个框的左边、上边、右边、下边的偏移[ 5.,  1., -2.,  4.]],[[-3.,  2.,  5.,  0.],[ 1.,  5.,  2.,  0.]],[[ 1.,  2.,  1.,  0.],[ 5.,  5., -2.,  0.]]]])off_min 
tensor([[[-3.,  1.], # a点到第一个框最小距离-3,  a点到第二个框的最小偏移距离 1[-2., -2.], #b点到第一个框最小距离-2,  b点到第二个框的最小偏移距离 -2[-3.,  0.], # c点到第一个框最小距离-3,  a点到第二个框的最小偏移距离 0[ 0., -2.]]]) # d点到第一个框最小距离0,  a点到第二个框的最小偏移距离 -2off_max tensor([[[5., 4.],[4., 5.],[5., 5.],[2., 5.]]])mask_in_gtboxes-->  # 判断了 特征点是否在框内
tensor([[[False,  True],  # a点到第一个框四边最小偏移距离小于0,所以,a点不属于第一个框,为false;以此类推。[False, False],[False, False],[False, False]]]) # [batch,h*w,m]mask_in_level-->  # 锁定在这个limit range上的所有的特征的点	
tensor([[[True, True],  # 锁定了a 在这个level中[True, True],  # 锁定了b[True, True],  # 锁定了c[True, True]]])# 锁定了d  都在这个FPN级别上  [batch,h*w,m]
'''

3、特征点是否在框中心的范围内,用来判断是否为正样本

	radiu = stride * sample_radiu_ratio # 4*1.15 = 4.6gt_center_x = (gt_boxes[..., 0] + gt_boxes[..., 2]) / 2gt_center_y = (gt_boxes[..., 1] + gt_boxes[..., 3]) / 2c_l_off = x[None, :, None] - gt_center_x[:, None, :]  # [1,h*w,1]-[batch_size,1,m]-->[batch_size,h*w,m]c_t_off = y[None, :, None] - gt_center_y[:, None, :]c_r_off = gt_center_x[:, None, :] - x[None, :, None]c_b_off = gt_center_y[:, None, :] - y[None, :, None]c_ltrb_off = torch.stack([c_l_off, c_t_off, c_r_off, c_b_off], dim=-1)  # [batch_size,h*w,m,4]c_off_max = torch.max(c_ltrb_off, dim=-1)[0]mask_center = c_off_max < radiu
print("c_ltrb_off",c_ltrb_off)
print("c_off_max",c_off_max)
print("mask_center",mask_center)'''
c_ltrb_off 
tensor([[[[-4.0000, -3.0000,  4.0000,  3.0000],  # 同上边一样,a到 第一个框 小的中心框四边 的距离[-0.5000, -1.5000,  0.5000,  1.5000]], # a到 第二个框 小的中心框四边 的距离[[ 0.0000, -3.0000,  0.0000,  3.0000], # b到 第一个框 小的中心框四边 的距离[ 3.5000, -1.5000, -3.5000,  1.5000]], # # b到 第二个框 小的中心框四边 的距离[[-4.0000,  1.0000,  4.0000, -1.0000],[-0.5000,  2.5000,  0.5000, -2.5000]],[[ 0.0000,  1.0000,  0.0000, -1.0000],[ 3.5000,  2.5000, -3.5000, -2.5000]]]])c_off_max tensor([[[4.0000, 1.5000], # 找到a特征点到第一个框中心框和第二个框的中心框的 最大距离[3.0000, 3.5000],[4.0000, 2.5000],[1.0000, 3.5000]]]) # [batch,h*w,m] 4个特征点(a,b,c,d) x 框的个数2个(第一个框,第二个框)mask_center tensor([[[True, True], # 判断是否在这个框里中心点里边 正样本[True, True],[True, True],[True, True]]]) ## [batch,h*w,m]
'''

3、制定mask,根据上边的 gt_box、fpn_level、mask_center

‘’’
mask_pos 是三个约束条件的交集,分别是特征点在gt中,特征点在level中,以及特征点距离Gt中的center小于指定的范围
‘’’

mask_pos = mask_in_gtboxes & mask_in_level & mask_center  # [batch_size,h*w,m]areas[~mask_pos] = 99999999
areas_min_ind = torch.min(areas, dim=-1)[1]  # [batch_size,h*w]
mask_pos = mask_in_gtboxes & mask_in_level & mask_center  # [batch_size,h*w,m]
print("pre_areas:",areas)
areas[~mask_pos] = 99999999
areas_min_ind = torch.min(areas, dim=-1)[1]  # [batch_size,h*w] # 返回索引,注意和上边的区别,上边返回值,比大小
# torch.max()  or  torch.min() dim=0 找列,dim=1  找行
print("mask_pos-->",mask_pos)
print("post_ares",areas)
print("areas_min_ind",areas_min_ind)'''
mask_in_gtboxes--> 
tensor([[[False,  True],[False, False],[False, False],[False, False]]])
mask_in_level--> 
tensor([[[True, True],[True, True],[True, True],[True, True]]])
mask_center 
tensor([[[True, True],[True, True],[True, True],[True, True]]])mask_pos--> 
tensor([[[False,  True],  # 只有a点在第二个框在这个fpn这个level, 同时满足这三个条件[False, False],[False, False],[False, False]]])post_ares 
tensor([[[1.0000e+08, 1.5000e+01],[1.0000e+08, 1.0000e+08],[1.0000e+08, 1.0000e+08],[1.0000e+08, 1.0000e+08]]]) # #[batch_size,h*w,m] 将 满足要求的 保持面积不面,其他设置为很大的值areas_min_ind tensor([[1, 0, 0, 0]]) # [batch_size,h*w] min[1]返回的是对应的indices  找到最小的面积,返回索引。'''

4、

![在这里插入图片描述](https://img-blog.csdnimg.cn/3e504ea230ff47c097ba9eb6caddca55.png在这里插入图片描述

reg_targets = ltrb_off[torch.zeros_like(areas, dtype=torch.bool)
.scatter_(-1, areas_min_ind.unsqueeze(dim=-1), 1)]  # [batch_size*h*w,4]
reg_targets = torch.reshape(reg_targets, (batch_size, -1, 4))  # [batch_size,h*w,4]
scatter_的用法:参考 https://blog.csdn.net/weixin_43496455/article/details/103870889
scatter(dim, index, src)将src中数据根据index中的索引按照dim的方向进行填充。dim=0
'''
areas: 
tensor([[[ 4., 15.],[ 4., 15.],[ 4., 15.],[ 4., 15.]]]) [1,4,2]
扩展维度之后  [1,4] --> torch.Size([1, 4, 1]) ===> [[[1,0,0,0]]]
torch.zeros_like(areas, dtype=torch.bool) 
tensor([[[False, False],[False, False],[False, False],[False, False]]])after scatter_--> 
tensor([[[False,  True],[ True, False],[ True, False],[ True, False]]]) # [1,4,2]ltrf_off 
tensor([[[[-3., -2.,  5.,  4.], # a 点到第一个框的左边、上边、右边、下边的偏移[ 1.,  1.,  2.,  4.]],  # a 点到第二个框的左边、上边、右边、下边的偏移[[ 1., -2.,  1.,  4.], # b 点到第一个框的左边、上边、右边、下边的偏移[ 5.,  1., -2.,  4.]],[[-3.,  2.,  5.,  0.],[ 1.,  5.,  2.,  0.]],[[ 1.,  2.,  1.,  0.],[ 5.,  5., -2.,  0.]]]])reg_targets1 
tensor([[ 1.,  1.,  2.,  4.], # a 点 第二个框[ 1., -2.,  1.,  4.], # b 点 第一个框[-3.,  2.,  5.,  0.], # c 点 第一个框[ 1.,  2.,  1.,  0.]])# d 点 第一个框# torch.Size([4, 4])reg_targets2 tensor([[[ 1.,  1.,  2.,  4.],[ 1., -2.,  1.,  4.],[-3.,  2.,  5.,  0.],[ 1.,  2.,  1.,  0.]]]) # torch.Size([1, 4, 4])
'''

这篇关于FCOS难点记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379903

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明