求极限问题:x趋于0时的等价替换及其适用条件、洛必达法

2023-11-10 01:04

本文主要是介绍求极限问题:x趋于0时的等价替换及其适用条件、洛必达法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!




x趋于0时的等价替换及其适用条件


等价无穷小的定义
lim ⁡ β α = 1 \lim\dfrac{\beta}{\alpha}=1 limαβ=1,则 β \beta β α \alpha α 是等价无穷小的,记作 α ∼ β \alpha \sim \beta αβ. 即当两个函数相比取极限,如果极限值为1,则这两个函数是等价无穷小的。

常用的等价替换(x趋于0时)

  • sin ⁡ x ∼ x \sin x \sim x sinxx

  • arcsin ⁡ x ∼ x \arcsin x \sim x arcsinxx

  • tan ⁡ x ∼ x \tan x \sim x tanxx

  • arctan ⁡ x ∼ x \arctan x\sim x arctanxx

  • e x − 1 ∼ x e^x -1\sim x ex1x

  • ln ⁡ ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)x

  • a x − 1 ∼ x ln ⁡ a , ( a > 0 , a ≠ 1. ) a^x-1\sim x\ln a\ \ ,\ \ \ \ \ (a>0, a \neq1.) ax1xlna  ,     (a>0,a=1.)

  • log ⁡ a ( 1 + x ) ∼ x ln ⁡ a , ( a > 0 , a ≠ 1. ) \log_a(1+x)\sim\dfrac{x}{\ln a}\ \ ,\ \ \ \ \ (a>0, a \neq1.) loga(1+x)lnax  ,     (a>0,a=1.)

  • 1 − cos ⁡ x ∼ 1 2 x 2 1-\cos x \sim \dfrac{1}{2}x^2 1cosx21x2

  • ( 1 + x ) α − 1 ∼ α x (1+x)^\alpha -1\sim \alpha x (1+x)α1αx

  • ( 1 + β x ) α − 1 ∼ α β x (1+\beta x)^\alpha -1\sim \alpha\beta x (1+βx)α1αβx

  • 1 + x n − 1 ∼ 1 n x \sqrt[n]{1+x}-1\sim\dfrac{1}{n}x n1+x 1n1x

  • x − sin ⁡ x ∼ 1 6 x 3 x-\sin x\sim\dfrac{1}{6}x^3 xsinx61x3

  • arcsin ⁡ x − x ∼ 1 6 x 3 \arcsin x-x\sim\dfrac{1}{6}x^3 arcsinxx61x3

  • tan ⁡ x − x ∼ 1 3 x 3 \tan x -x\sim \dfrac{1}{3}x^3 tanxx31x3

  • x − arctan ⁡ x ∼ 1 3 x 3 x-\arctan x\sim\dfrac{1}{3}x^3 xarctanx31x3

  • x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 x-\ln(1+x) \sim \dfrac{1}{2}x^2 xln(1+x)21x2


  • 等价替换的本质是当x趋于某一点时,两个函数在该点处相切,即两函数在该点处斜率相同且只有该点处一个交点。 斜率相同,意味着两函数在该点处具有相同的增长率,在x的值无尽逼近于该点时,两函数值几乎相同,所以在求极限的时候可以用等价替换,来简化问题。从斜率(函数变化率)的角度也更容易理解洛必达法则。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


洛必达法则:设
(1) 当 x → a x\rightarrow a xa 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于 0;
(2) 在点 a a a 的某去心领域内, f ′ ( x ) f^{\prime}(x) f(x) F ′ ( x ) F^{\prime}(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F^{\prime}(x)\neq 0 F(x)=0

(3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x\rightarrow a}\dfrac{f^{\prime}(x)}{F^{\prime}(x)} xalimF(x)f(x) 存在(或为 ∞ \infty

lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x\rightarrow a}\dfrac{f(x)}{F(x)}=\lim\limits_{x\rightarrow a}\dfrac{f^{\prime}(x)}{F^{\prime}(x)} xalimF(x)f(x)=xalimF(x)f(x).

洛必达法则使用于以下类型的极限中:(未定式类型)

  • 0 0 \dfrac{0}{0} 00

  • ∞ ∞ \dfrac{\infty}{\infty}

  • 0 ⋅ ∞ 0\cdot\infty 0

  • 0 0 0^0 00

  • 1 ∞ 1^{\infty} 1

  • ∞ 0 \infty^0 0

  • ∞ − ∞ \infty-\infty .


等价替换适用的条件

在求极限问题中,不是所有的情况都是可以直接用等价替换的。

从等价无穷小的定义中 lim ⁡ β α = 1 \lim\dfrac{\beta}{\alpha}=1 limαβ=1 可以看出, α \alpha α β \beta β 的极限比值为1,所以在乘除关系中,可以使用等价无穷小进行替换。

等价替换适用于乘除关系中,部分加减关系中可以用等价无穷小替换。大致如下:

  • α ∼ α 1 \alpha\sim\alpha_1 αα1 β ∼ β 1 \beta\sim\beta_1 ββ1,则 lim ⁡ α β = lim ⁡ α 1 β = lim ⁡ α β 1 = lim ⁡ α 1 β 1 . \lim\dfrac{\alpha}{\beta}=\lim\dfrac{\alpha_1}{\beta}=\lim\dfrac{\alpha}{\beta_1}=\lim\dfrac{\alpha_1}{\beta_1}. limβα=limβα1=limβ1α=limβ1α1.

  • α ∼ α 1 \alpha\sim\alpha_1 αα1 β ∼ β 1 \beta\sim\beta_1 ββ1,且 lim ⁡ α 1 β 1 = A ≠ 1 \lim\dfrac{\alpha_1}{\beta_1}=A\neq1 limβ1α1=A=1,则 α − β ∼ α 1 − β 1 \alpha-\beta\sim\alpha_1-\beta_1 αβα1β1.

  • α ∼ α 1 \alpha\sim\alpha_1 αα1 β ∼ β 1 \beta\sim\beta_1 ββ1,且 lim ⁡ α 1 β 1 = A ≠ − 1 \lim\dfrac{\alpha_1}{\beta_1}=A\neq-1 limβ1α1=A=1,则 α + β ∼ α 1 + β 1 \alpha+\beta\sim\alpha_1+\beta_1 α+βα1+β1.

简单地讲就是,若极限的分子分母中有加减关系,且等价替换后加减关系的结果为0,这时候一般不能用等价替换。

这篇关于求极限问题:x趋于0时的等价替换及其适用条件、洛必达法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379507

相关文章

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2