推荐 :基于新闻标题的股价走势分析(附链接)

2023-11-10 00:20

本文主要是介绍推荐 :基于新闻标题的股价走势分析(附链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:  Ronil Patil  翻译:王闯 (Chuck)。校对:詹好

本文约1900字,建议阅读5分钟

作者基于Kaggle上的新闻头条和股票指数数据集,用Python演示了如何利用NLP技术对新闻标题进行情感分析,从而预测股价走势。

本文曾作为数据科学博客松(https://datahack.analyticsvidhya.com/contest/data-science-blogathon-7/)的部分内容发表。

“不要在草堆里找一根藏针,而是要买下整个草堆!”

本次的主题与上述的引文有关,是一项对于股票市场的数据研究工作(译者注:引文是美国指数基金先驱John Bogle的名言,简述了指数型基金的概念,即与其花昂贵的费用请经理人从股市里大海捞针,不如用最简单的方法、最少的手续费,投资整个市场。)

本文介绍了基于自然语言处理(NLP)技术,如何创建一个利用新闻标题来分析股价的模型。具体而言,利用NLP来对新闻标题进行情感分析,从而预测股价涨跌。因此,本文的所有内容都是围绕如何用情感分析来预测股价展开的。

数据集介绍

 

这里我们使用了Kaggle数据集。你可以从这里(https://github.com/ronil068/Stock-Sentiment-Analysis)直接下载。该数据集是Kaggle上可用的世界新闻和股票价格的组合数据。数据框中包括其中25列分别对应每一天的25条TOP新闻,日期列(Date)和标签列(Label, 因变量特征)。数据范围是2008年至2016年,数据框2000年至2008年是从雅虎财经抓取的。标签基于道琼斯工业平均指数。

  • 标签为1–股价上涨。

  • 标签为0–股价持平或下跌。

开始

 

首先引入相关库
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
读取数据集

df = pd.read_csv('F:Stock-Sentiment-Analysis-master/Stock News Dataset.csv', encoding = "ISO-8859-1")

我们可以观察一下该数据集的一些特征:Label(标签)是我们的因变量特征(目标值),其余26个特征是自变量。当Label特征的值为1时,代表股价上涨,值为0时,代表股价持平或下跌;Top1到Top25,则是当日的25个Top新闻的标题;Date是时间信息。以上我们用来进行分析的数据集了。我们将利用NLP来对文章标题进行情感分析,从而预测股价将上涨还是下跌。

将数据集划分为训练集和测试集

 

train = df[df['Date'] < '20150101']
test = df[df['Date'] > '20141231']

 

我们将根据日期划分数据集。日期小于20150101的数据集为训练数据集,日期大于20141231的数据集为测试数据集。

特征工程

首先,我们需要从Top1到Top25的这些文本数据集中删除句号、感叹号等符号,只保留文字信息。因为进行情感分析不需要符号之类的信息。这里使用了正则表达式来进行处理。如前文所述,除了小写字母a-z和大写字母A-Z之外,所有内容都被替换为空白。如果有任何特殊字符出现,它将被自动删除并被替换为空格。

 

 # Removing special characters
data=train.iloc[:,2:27]
data.replace("[^a-zA-Z]"," ",regex=True, inplace=True)
# Renaming column names for better understanding and ease of access
list1= [i for i in range(25)]
new_Index=[str(i) for i in list1]
data.columns= new_Index
data.head(5)

更新后的数据集如下所示:

同时,我们还需要统一字符的大小写。这是非常关键的一步,因为每当我们尝试创建词袋模型或TF-IDF模型时,如果一个单词以大写字母开头,同时当它在另一个句子中以小写出现,模型将认为这是两个不同的单词。也就是说本来是同一个单词,但仅仅由于大小写的不同,却被视为不同的单词。这是我们需要避免的。

 # Convertng headlines to lower case
for index in new_Index:data[index] = data[index].str.lower()
data.head(1)

因此,请始终确保已将所有字母都转换为小写。当然也可以将它们转换为大写字母,但是如果决定将所有字母都转换为大写,则应当确保每个字母都应大写。

根据索引来合并所有新闻标题:

现在我们将某一天的25个Top新闻标题合并在一起,成为一个段落。这是为了方面我们后续应用CountVectorizer方法,即词袋模型或TF-IDF模型。因此,我将遍历每个日期,并将每一个日期下的25个标题合并为一个段落。

 headlines = []
for row in range(0,len(data.index)):headlines.append(' '.join(str(x) for x in data.iloc[row,0:25]))

现在,某一天的Top新闻标题就变成了这样:


应用CountVectorizer和RandomForestClassifier方法

此处,文本词频统计向量会将这些句子向量化。这便是词袋的含义。

 ## implement BAG OF WORDS
countvector=CountVectorizer(ngram_range=(2,2))
traindataset=countvector.fit_transform(headlines)## implement RandomForest Classifier
randomclassifier=RandomForestClassifier(n_estimators=200,criterion='entropy')
randomclassifier.fit(traindataset,train['Label'])
在测试集上进行预测

 

现在我们将对测试集进行与训练集相同的特征转换。

 

 ## Predict for the Test Dataset
test_transform= []
for row in range(0,len(test.index)):test_transform.append(' '.join(str(x) for x in test.iloc[row,2:27]))
test_dataset = countvector.transform(test_transform)
predictions = randomclassifier.predict(test_dataset)
最后,检查准确性 

 

在这里,我们将利用分类报告,混淆矩阵和准确率分数来检查模型的准确性。

 matrix = confusion_matrix(test['Label'],predictions)
print(matrix)
score = accuracy_score(test['Label'],predictions)
print(score)
report = classification_report(test['Label'],predictions)
print(report)

我们终于完成了所有步骤。

现在,假设你想预测明天股价涨跌,只需对排名前25的头条新闻应用本文中介绍的转换方法,然后将其输入到模型中,模型就会输出0或1,来表示明天的股票会不会上涨。

这就是如何利用新闻标题来进行股票情感分析的方法。

关于作者

Ronil Patil是一个终身学习者,对深度学习,NLP,机器学习和物联网充满热情。

Ronil Patil

https://www.linkedin.com/in/ronil08/

原文标题:

Stock Price Movement Based On News Headline

原文链接:

https://www.analyticsvidhya.com/blog/2021/05/stock-price-movement-based-on-news-headline

译者简介:王闯(Chuck),台湾清华大学资讯工程硕士。曾任奥浦诺管理咨询公司数据分析主管,现任尼尔森市场研究公司数据科学经理。很荣幸有机会通过数据派THU微信公众平台和各位老师、同学以及同行前辈们交流学习。

END

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


合作请加QQ:365242293  

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

这篇关于推荐 :基于新闻标题的股价走势分析(附链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379309

相关文章

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑