推荐 :基于新闻标题的股价走势分析(附链接)

2023-11-10 00:20

本文主要是介绍推荐 :基于新闻标题的股价走势分析(附链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:  Ronil Patil  翻译:王闯 (Chuck)。校对:詹好

本文约1900字,建议阅读5分钟

作者基于Kaggle上的新闻头条和股票指数数据集,用Python演示了如何利用NLP技术对新闻标题进行情感分析,从而预测股价走势。

本文曾作为数据科学博客松(https://datahack.analyticsvidhya.com/contest/data-science-blogathon-7/)的部分内容发表。

“不要在草堆里找一根藏针,而是要买下整个草堆!”

本次的主题与上述的引文有关,是一项对于股票市场的数据研究工作(译者注:引文是美国指数基金先驱John Bogle的名言,简述了指数型基金的概念,即与其花昂贵的费用请经理人从股市里大海捞针,不如用最简单的方法、最少的手续费,投资整个市场。)

本文介绍了基于自然语言处理(NLP)技术,如何创建一个利用新闻标题来分析股价的模型。具体而言,利用NLP来对新闻标题进行情感分析,从而预测股价涨跌。因此,本文的所有内容都是围绕如何用情感分析来预测股价展开的。

数据集介绍

 

这里我们使用了Kaggle数据集。你可以从这里(https://github.com/ronil068/Stock-Sentiment-Analysis)直接下载。该数据集是Kaggle上可用的世界新闻和股票价格的组合数据。数据框中包括其中25列分别对应每一天的25条TOP新闻,日期列(Date)和标签列(Label, 因变量特征)。数据范围是2008年至2016年,数据框2000年至2008年是从雅虎财经抓取的。标签基于道琼斯工业平均指数。

  • 标签为1–股价上涨。

  • 标签为0–股价持平或下跌。

开始

 

首先引入相关库
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
读取数据集

df = pd.read_csv('F:Stock-Sentiment-Analysis-master/Stock News Dataset.csv', encoding = "ISO-8859-1")

我们可以观察一下该数据集的一些特征:Label(标签)是我们的因变量特征(目标值),其余26个特征是自变量。当Label特征的值为1时,代表股价上涨,值为0时,代表股价持平或下跌;Top1到Top25,则是当日的25个Top新闻的标题;Date是时间信息。以上我们用来进行分析的数据集了。我们将利用NLP来对文章标题进行情感分析,从而预测股价将上涨还是下跌。

将数据集划分为训练集和测试集

 

train = df[df['Date'] < '20150101']
test = df[df['Date'] > '20141231']

 

我们将根据日期划分数据集。日期小于20150101的数据集为训练数据集,日期大于20141231的数据集为测试数据集。

特征工程

首先,我们需要从Top1到Top25的这些文本数据集中删除句号、感叹号等符号,只保留文字信息。因为进行情感分析不需要符号之类的信息。这里使用了正则表达式来进行处理。如前文所述,除了小写字母a-z和大写字母A-Z之外,所有内容都被替换为空白。如果有任何特殊字符出现,它将被自动删除并被替换为空格。

 

 # Removing special characters
data=train.iloc[:,2:27]
data.replace("[^a-zA-Z]"," ",regex=True, inplace=True)
# Renaming column names for better understanding and ease of access
list1= [i for i in range(25)]
new_Index=[str(i) for i in list1]
data.columns= new_Index
data.head(5)

更新后的数据集如下所示:

同时,我们还需要统一字符的大小写。这是非常关键的一步,因为每当我们尝试创建词袋模型或TF-IDF模型时,如果一个单词以大写字母开头,同时当它在另一个句子中以小写出现,模型将认为这是两个不同的单词。也就是说本来是同一个单词,但仅仅由于大小写的不同,却被视为不同的单词。这是我们需要避免的。

 # Convertng headlines to lower case
for index in new_Index:data[index] = data[index].str.lower()
data.head(1)

因此,请始终确保已将所有字母都转换为小写。当然也可以将它们转换为大写字母,但是如果决定将所有字母都转换为大写,则应当确保每个字母都应大写。

根据索引来合并所有新闻标题:

现在我们将某一天的25个Top新闻标题合并在一起,成为一个段落。这是为了方面我们后续应用CountVectorizer方法,即词袋模型或TF-IDF模型。因此,我将遍历每个日期,并将每一个日期下的25个标题合并为一个段落。

 headlines = []
for row in range(0,len(data.index)):headlines.append(' '.join(str(x) for x in data.iloc[row,0:25]))

现在,某一天的Top新闻标题就变成了这样:


应用CountVectorizer和RandomForestClassifier方法

此处,文本词频统计向量会将这些句子向量化。这便是词袋的含义。

 ## implement BAG OF WORDS
countvector=CountVectorizer(ngram_range=(2,2))
traindataset=countvector.fit_transform(headlines)## implement RandomForest Classifier
randomclassifier=RandomForestClassifier(n_estimators=200,criterion='entropy')
randomclassifier.fit(traindataset,train['Label'])
在测试集上进行预测

 

现在我们将对测试集进行与训练集相同的特征转换。

 

 ## Predict for the Test Dataset
test_transform= []
for row in range(0,len(test.index)):test_transform.append(' '.join(str(x) for x in test.iloc[row,2:27]))
test_dataset = countvector.transform(test_transform)
predictions = randomclassifier.predict(test_dataset)
最后,检查准确性 

 

在这里,我们将利用分类报告,混淆矩阵和准确率分数来检查模型的准确性。

 matrix = confusion_matrix(test['Label'],predictions)
print(matrix)
score = accuracy_score(test['Label'],predictions)
print(score)
report = classification_report(test['Label'],predictions)
print(report)

我们终于完成了所有步骤。

现在,假设你想预测明天股价涨跌,只需对排名前25的头条新闻应用本文中介绍的转换方法,然后将其输入到模型中,模型就会输出0或1,来表示明天的股票会不会上涨。

这就是如何利用新闻标题来进行股票情感分析的方法。

关于作者

Ronil Patil是一个终身学习者,对深度学习,NLP,机器学习和物联网充满热情。

Ronil Patil

https://www.linkedin.com/in/ronil08/

原文标题:

Stock Price Movement Based On News Headline

原文链接:

https://www.analyticsvidhya.com/blog/2021/05/stock-price-movement-based-on-news-headline

译者简介:王闯(Chuck),台湾清华大学资讯工程硕士。曾任奥浦诺管理咨询公司数据分析主管,现任尼尔森市场研究公司数据科学经理。很荣幸有机会通过数据派THU微信公众平台和各位老师、同学以及同行前辈们交流学习。

END

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


合作请加QQ:365242293  

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

这篇关于推荐 :基于新闻标题的股价走势分析(附链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379309

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

在 Windows 上安装 DeepSeek 的完整指南(最新推荐)

《在Windows上安装DeepSeek的完整指南(最新推荐)》在Windows上安装DeepSeek的完整指南,包括下载和安装Ollama、下载DeepSeekRXNUMX模型、运行Deep... 目录在www.chinasem.cn Windows 上安装 DeepSeek 的完整指南步骤 1:下载并安装

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处