本文主要是介绍LCD基础及S3C2410 LCD控制器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
作者:dreamzqw
转自:http://blog.csdn.net/dreamzqw/article/details/1878689
一、超薄平面显示器时代来临 电视机所采用的 CRT(阴极射线管)有着体积大、重量重、尺寸受限等缺点。随着电子科技的发展,对移动显示的要求越来越多,CRT 的先天限制,让其小型化、行动化的理想受到阻碍。这使得开发新一代的显示器技术变得更有其必要! 新一代的显示器讲求几个重点:平面直角,画面显示不变形、轻薄短小耗能少,携带方便且同时要与现有的影像信号技术兼容。目前谈论到超薄型显示器技术,最普及当是 TFT LCD 的应用了,举凡数字相机、笔记型计算机、PDA 等,需要显示复杂信息的电子产品通通少不了它。TFT LCD 技术又包含了,低温多硅晶TFT LCD、反射式TFT LCD 等,多项不同的显示技术,下面我们就要来一探 LCD 的历史与原理。 二、液晶的发明与发现 液晶的诞生来自于一项非常特殊物质的发现,早在 1850 年 Virchow, Mettenheimer 和 Valentin 这三个人就发现 nerve fibre 的粹取物中含有这种不寻常的东西。到了 1877 年德国物理学家 Otto Lehmann 运用偏极化的显微镜首次观测到了液晶化的现象,但他对此一现象的成因并不了解。直到公元1888年,奥地利的植物学家 Friedrich Reinitzer(1857-1927)发现了螺旋性甲苯酸盐的化合物(cholesteryl benzoate),确认了这种化合物在加热时具有两个不同温度的熔点,在这两个不同的温度点中,其状态介于一般液态与固态物质之间,类似胶状,但在某一温度范围内其又具有液体和结晶双方性质,由于其特殊的状态。Reinitzer 后来走访 Lehmann 深入探讨这种物质的表现,其后两人便命名这种物质为「Liquid Crystal」,就是液态结晶物质的意思。Reinitzer 和 Lehmann 这两人被誉为液晶之父。 同 CRT 阴极射线管一样,液晶虽早在1888年就被发现(实际上,但是实际应用在生活周遭时,已是80年后的事了。因为液晶在两次大战中对军事用途的帮助不大,以致于 其发展落后 CRT 甚多。比较重要的是 1922 年 Oseen 和 Z?cher 这两位科学家为液晶确立状态变化之方程式。一直到了 1968年美国RCA公司工程师们利用液晶分子受到电压的影响而改变其分子的排列状态,并且可以让入射光线产生偏转的现象之原理,制造了世界第一台使用液晶显示的屏幕。由此开始,加上了1970年代日本 SONY 与 Sharp 两家公司对液晶显示技术全面开发与应用,让液晶显示器成功的融入现代的电子产品之中。 描述液晶的物理性质,必须先了解一般固态晶体具有方向性,而液态晶体这种特殊物质,不但具有一般固体晶体的方向性外,同时又具有液体的流动性。改变固态晶体方向必须旋转整个晶体,改变液态晶体就不用那幺麻烦,它的方向性可经由电场或磁场来控制。 改变液晶的方向视液晶的成分而有所不同,有的液晶和电场平行时位能较低,所以当外加电场时会朝着电场方向转动,相对的,也有液晶是对应电场垂直时位能较低。由于液晶对于外加力量(电场或磁场敏感),从而呈现了方向性的效果,也导致了当光线入射液晶中时,必然会按照液晶分子的排列方式行进,产生了自然的偏转现像(见图3-1提供)。 | ||||
图3-1 | ||||
部分液晶分子的电子结构中,有着很强的电子共轭运动能力,所以当液晶分子受到外加电场的作用,便很容易的被极化产生感应偶极性(induced dipolar),这也是液晶分子之间互相作用力量的来源。而一般电子产品中所用的液晶显示器,就是是利用液晶的光电效应,藉由外部的电压控制,再透过液晶分子的折射特性,以及对光线的旋转能力来获得亮暗情况,进而达到显像的目的。 | ||||
|
四、液晶显示器的发展与未来 五、S3C2410内置LCD控制器详解 |
![]() |
图3-3 |
REGBANK 是LCD控制器的寄存器组,用来对LCD控制器的各项参数进行设置。而 LCDCDMA 则是LCD控制器专用的DMA信道,负责将视频资料从系统总线(System Bus)上取来,通过 VIDPRCS从VD[23:0]发送给LCD屏。同时 TIMEGEN 和 LPC3600 负责产生 LCD屏所需要的控制时序,例如VSYNC、HSYNC、VCLK、VDEN,然后从VIDEO MUX 送给LCD屏。 |
TFT屏时序分析 图3-4是TFT屏的典型时序。其中VSYNC是帧同步信号,VSYNC每发出1个脉冲,都意味着新的1屏视频资料开始发送。而HSYNC为行同步信号,每个HSYNC脉冲都表明新的1行视频资料开始发送。而VDEN则用来标明视频资料的有效,VCLK是用来锁存视频资料的像数时钟。 并且在帧同步以及行同步的头尾都必须留有回扫时间,例如对于VSYNC来说前回扫时间就是(VSPW+1)+(VBPD+1),后回扫时间就是(VFPD+1);HSYNC亦类同。这样的时序要求是当初CRT显示器由于电子枪偏转需要时间,但后来成了实际上的工业标准,乃至于后来出现的TFT屏为了在时序上于CRT兼容,也采用了这样的控制时序。 |
![]() |
图3-4 |
YFARM9-EDU-1采用的是Samsung公司的1款3.5寸TFT真彩LCD屏,分辩率为240*320,下图为该屏的时序要求。 |
![]() |
图3-5 |
通过对比图3-4和图3-5,我们不难看出: HSPW+1=4 -> HSPW=3 |
![]() |
LINECNT :当前行扫描计数器值,标明当前扫描到了多少行 CLKVAL :决定VCLK的分频比。LCD控制器输出的VCLK是直接由系统总线(AHB)的工作频率HCLK直接分频得到的。做为240*320的TFT屏,应保证得出的VCLK在5~10MHz之间 MMODE :VM信号的触发模式(仅对STN屏有效,对TFT屏无意义) PNRMODE :选择当前的显示模式,对于TFT屏而言,应选择[11],即TFT LCD panel BPPMODE :选择色彩模式,对于真彩显示而言,选择16bpp(64K色)即可满足要求 ENVID :使能LCD信号输出 |
![]() |
VBPD , LINEVAL , VFPD , VSPW 的各项含义已经在前面的时序图中得到体现,这里不再赘述。 |
![]() |
HBPD , HOZVAL , HFPD 的各项含义已经在前面的时序图中得到体现,这里不再赘述。![]() HSPW 的含义已经在前面的时序图中得到体现,这里不再赘述。 MVAL 只对 STN屏有效,对TFT屏无意义。 |
HSPW 的含义已经在前面的时序图中得到体现,这里不再赘述。
MVAL 只对 STN屏有效,对TFT屏无意义。
VSTATUS :当前VSYNC信号扫描状态,指明当前VSYNC同步信号处于何种扫描阶段
HSTATUS :当前HSYNC信号扫描状态,指明当前HSYNC同步信号处于何种扫描阶段
BPP24BL :设定24bpp显示模式时,视频资料在显示缓冲区中的排列顺序(即低位有效还是高位有效)。对于16bpp的64K色显示模式,该设置位无意义。
FRM565 :对于16bpp显示模式,有2中形式,一种是RGB=5:5:5:1,另一种是5:6:5。后一种模式最为常用,它的含义是表示64K种色彩的16bit RGB资料中,红色(R)占了5bit,绿色(G)占了6bit,兰色(B)占了5bit
INVVCLK , INVLINE , INVFRAME , INVVD :通过前面的时序图,我们知道,CPU的LCD控制器输出的时序默认是正脉冲,而LCD需要VSYNC(VFRAME)、VLINE(HSYNC)均为负脉冲,因此 INVLINE 和 INVFRAME 必须设为“1 ”,即选择反相输出。 INVVDEN , INVPWREN , INVLEND 的功能同前面的类似。
PWREN 为LCD电源使能控制。在CPU LCD控制器的输出信号中,有一个电源使能管脚LCD_PWREN,用来做为LCD屏电源的开关信号。
ENLEND 对普通的TFT屏无效,可以不考虑。
BSWP 和 HWSWP 为字节(Byte)或半字(Half-Word)交换使能。由于不同的GUI对FrameBuffer(显示缓冲区)的管理不同,必要时需要通过调整 BSWP 和 HWSWP 来适应GUI。
这篇关于LCD基础及S3C2410 LCD控制器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!