C#开发PACS医学影像处理系统(十三):绘图处理之病灶测量

本文主要是介绍C#开发PACS医学影像处理系统(十三):绘图处理之病灶测量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上一篇文章,当我们可以绘制图形标记后,就可以在此操作类上面进行扩展,

 

比如测量类工具,目前整理出的常用绘图和测量功能如下:

测量工具类:

功能说明
标尺线段长度测量
折尺曲线长度测量 
心胸比两根线段按比例测量 
交叉尺两根线段互相垂直测量 
Cobb角两根线段的垂线交点角度测量,一般用于脊柱曲率 
开角两根线段的延长交点的角度测量
T型尺两根线段相交的任意角度摇摆测量和长度测量
角度测量角度测量
 圆形测量圆形或椭圆面积测量,包括CT值,平均值,方差,最大最小值
矩形测量 矩形面积测量,包括CT值,平均值,方差,最大最小值
多边形测量 多边形面积

以线段测量为例,看效果:

 在绘制图形的基础上,我们创建一个Text Block来显示测量结果:

//文本对象TextBlock txtMeasure;/// <summary>/// 创建测量结果文本/// </summary>/// <param name="point"></param>public void CreateMeasure(Point point){if (!isMeasure){return;}txtMeasure = new TextBlock();txtMeasure.Text = "0.0mm";txtMeasure.FontSize = ShapeManager.shapeMeasureFontSize;txtMeasure.Foreground = ShapeManager.shapeMeasureColor;txtMeasure.Height = 30;txtMeasure.Width = 100;txtMeasure.SetValue(Canvas.LeftProperty, point.X);txtMeasure.SetValue(Canvas.TopProperty, point.Y);canvas.Children.Add(txtMeasure);measureList.Add(txtMeasure);}

计算两点之间的距离:其中dpi是缩放比例

 /// <summary>/// 求平面中两点之间距离/// </summary>/// <param name="p1">点1</param>/// <param name="p2">点2</param>/// <returns></returns>public static double GetDistance(Point p1, Point p2){double result = 0;result = Math.Sqrt((p1.X * dpiX - p2.X * dpiX) * (p1.X * dpiX - p2.X * dpiX) + (p1.Y * dpiY - p2.Y * dpiY) * (p1.Y * dpiY - p2.Y * dpiY));return result;}

一些角度类型的测量计算相对复杂一点,需要计算角度大小和绘制弧线

 /// <summary>/// 弧线画笔对象/// </summary>public Stroke circleStroke;/// <summary>/// 绘制角度弧线/// </summary>private void DrawAxiesCircle(Point point0, Point point1, Point point2){if (inkCanvas.Strokes.Count > 0 && circleStroke != null){if (inkCanvas.Strokes.Contains(circleStroke)){inkCanvas.Strokes.Remove(circleStroke);}}//计算角度double a = Math.Sqrt((point1.X - point2.X) * (point1.X - point2.X) + (point1.Y - point2.Y) * (point1.Y - point2.Y));double b = Math.Sqrt((point1.X - point0.X) * (point1.X - point0.X) + (point1.Y - point0.Y) * (point1.Y - point0.Y));double c = Math.Sqrt((point2.X - point0.X) * (point2.X - point0.X) + (point2.Y - point0.Y) * (point2.Y - point0.Y));double cTheta = (a * a + b * b - c * c) / (2 * a * b);double theta = Math.Acos(cTheta) * 180 / Math.PI;//绘制弧线double r = 30;r = a > b ? b : a;double rMax = a;if (rMax > b){rMax = b;}if (r > 0.5 * rMax){r = 0.5 * rMax;}double theta0 = Math.Atan((point1.Y - point2.Y) / (point2.X - point1.X + 1e-10)) * 180 / Math.PI;if (point1.X > point2.X){theta0 = 180 + theta0;}List<Point> pointList = new List<Point>();double sin_ab = ((point2.X - point1.X) * (point0.Y - point1.Y) - (point2.Y - point1.Y) * (point0.X - point1.X)) / (a * b); ;if (sin_ab <= 0){if (theta < 1){for (double delta = 0.0001; delta <= theta;){double th = delta + theta0;pointList.Add(new Point(point1.X + r * Math.Cos(th * Math.PI / 180), point1.Y - r * Math.Sin(th * Math.PI / 180)));delta = delta + 0.0001;}}else if (theta > 1 && theta < 20){for (double delta = 0.01; delta <= theta;){double th = delta + theta0;pointList.Add(new Point(point1.X + r * Math.Cos(th * Math.PI / 180), point1.Y - r * Math.Sin(th * Math.PI / 180)));delta = delta + 0.01;}}else{for (double delta = 0; delta <= theta; delta++){double th = delta + theta0;pointList.Add(new Point(point1.X + r * Math.Cos(th * Math.PI / 180), point1.Y - r * Math.Sin(th * Math.PI / 180)));}}}else{if (theta < 1){for (double delta = -theta; delta <= 0;){double th = delta + theta0;pointList.Add(new Point(point1.X + r * Math.Cos(th * Math.PI / 180), point1.Y - r * Math.Sin(th * Math.PI / 180)));delta = delta + 0.0001;}}else if (theta > 1 && theta < 20){for (double delta = -theta; delta <= 0;){double th = delta + theta0;pointList.Add(new Point(point1.X + r * Math.Cos(th * Math.PI / 180), point1.Y - r * Math.Sin(th * Math.PI / 180)));delta = delta + 0.01;}}else{for (double delta = -theta; delta <= 0; delta++){double th = delta + theta0;pointList.Add(new Point(point1.X + r * Math.Cos(th * Math.PI / 180), point1.Y - r * Math.Sin(th * Math.PI / 180)));}}}if (pointList.Count > 0){StylusPointCollection point = new StylusPointCollection(pointList);circleStroke = new Stroke(point){DrawingAttributes = inkCanvas.DefaultDrawingAttributes.Clone(),};inkCanvas.Strokes.Add(circleStroke);txt.Text = theta.ToString(ShapeManager.measureDigit) + "°";}ReSetAnglePoint();}

 在圆形和矩形的面积测量中,我们可以使用GetArea()方法来获取图形面积:

 /// <summary>/// 计算面积测量结果/// </summary>public void CalculateMeasure(){if (!isMeasure){return;}Ellipse ellipse = (Ellipse)shape;ellipse.UpdateLayout();txtMeasure.Text = Math.Sqrt(ellipse.RenderedGeometry.GetArea()).ToString(ShapeManager.measureDigit) + "mm²";ReSetMeasurePoint();}

其他一些需要注意的细节:

1.当单元格放大缩小时,图形也要重新计算各个控制点的位置来同步放大或缩小

监听画布大小变化事件:

private void ToolInkCanvas_SizeChanged(object sender, SizeChangedEventArgs e)

重新绘制元素:

 /// <summary>/// 重新绘制画布元素大小/// </summary>public void ReSetShapeSize(){for (int i = 0; i < shapeManager.shapeList.Count; i++){sizeScaleX = ToolInkCanvas.ActualWidth / shapeManager.shapeList[i].cvsWidth;sizeScaleY = ToolInkCanvas.ActualHeight / shapeManager.shapeList[i].cvsHeight;shapeManager.shapeList[i].cvsWidth = ToolInkCanvas.ActualWidth;shapeManager.shapeList[i].cvsHeight = ToolInkCanvas.ActualHeight;if (shapeManager.shapeList[i] is TextInfo){shapeManager.shapeList[i].ReSetScalePoints(sizeScaleX, sizeScaleY, "text", shapeManager.shapeList[i]);}else if (shapeManager.shapeList[i] is CrossRulerInfo){shapeManager.shapeList[i].ReSetScalePoints(sizeScaleX, sizeScaleY, "crossRuler", shapeManager.shapeList[i]);}else if (shapeManager.shapeList[i] is AngleRulerInfo){shapeManager.shapeList[i].ReSetScalePoints(sizeScaleX, sizeScaleY, "angle", shapeManager.shapeList[i]);}else if (shapeManager.shapeList[i] is TRulerInfo){shapeManager.shapeList[i].ReSetScalePoints(sizeScaleX, sizeScaleY, "tRulerInfo", shapeManager.shapeList[i]);}else if (shapeManager.shapeList[i] is CobbAngleInfo){shapeManager.shapeList[i].ReSetScalePoints(sizeScaleX, sizeScaleY, "cobbAngleInfo", shapeManager.shapeList[i]);}else if (shapeManager.shapeList[i] is OpenAngleInfo){shapeManager.shapeList[i].ReSetScalePoints(sizeScaleX, sizeScaleY, "openAngleInfo", shapeManager.shapeList[i]);}else{shapeManager.shapeList[i].ReSetScalePoints(sizeScaleX, sizeScaleY);}}}

2.文字可能会挡住图像,要能分离并拖动到其他位置,监听鼠标事件和重新设置位置即可。

 3.标记的复制与粘贴,思路是将List集合中用户所选定的标记插入到另一个单元格的List集合中,并支持Ctrl C和Ctrl V 快捷键。

测量标记汇总(Demo):

 C#开发PACS、RIS、3D医学影像处理系统系列教程 目录整理:

菜鸟入门篇

C#开发PACS医学影像处理系统(一):开发背景和功能预览

C#开发PACS医学影像处理系统(二):界面布局之菜单栏

C#开发PACS医学影像处理系统(三):界面布局之工具栏

C#开发PACS医学影像处理系统(四):界面布局之状态栏

C#开发PACS医学影像处理系统(五):查询病人信息列表

C#开发PACS医学影像处理系统(六):加载Dicom影像

C#开发PACS医学影像处理系统(七):读取影像Dicom信息

C#开发PACS医学影像处理系统(八):单元格变换

C#开发PACS医学影像处理系统(九):序列控件与拖拽

C#开发PACS医学影像处理系统(十):Dicom影像下载策略与算法

C#开发PACS医学影像处理系统(十一):Dicom影像挂片协议

C#开发PACS医学影像处理系统(十二):绘图处理之图形标记

C#开发PACS医学影像处理系统(十三):绘图处理之病灶测量

C#开发PACS医学影像处理系统(十四):处理Dicom影像窗宽窗位

C#开发PACS医学影像处理系统(十五):Dicom影像交叉定位线算法

C#开发PACS医学影像处理系统(十六):2D处理之影像平移和缩放

C#开发PACS医学影像处理系统(十七):2D处理之影像旋转和翻转

C#开发PACS医学影像处理系统(十八):Dicom使用LUT色彩增强和反色

C#开发PACS医学影像处理系统(十九):Dicom影像放大镜

医学影像三维篇

C#开发PACS医学影像三维重建(一):使用VTK重建3D影像

C#开发PACS医学影像三维重建(二):使用VTK进行体绘制

C#开发PACS医学影像三维重建(三):纹理映射与颜色传输

C#开发PACS医学影像三维重建(四):3D网格平滑效果

C#开发PACS医学影像三维重建(五):基于梯度透明的组织漫游

C#开发PACS医学影像三维重建(六):三维光源与阴影效果

C#开发PACS医学影像三维重建(七):空间测量与标注

C#开发PACS医学影像三维重建(八):VR体绘制

C#开发PACS医学影像三维重建(九):MPR三视图切面重建

C#开发PACS医学影像三维重建(十):MIP最小密度投影

C#开发PACS医学影像三维重建(十一):CPR曲面重建

C#开发PACS医学影像三维重建(十二):VE虚拟内镜技术

C#开发PACS医学影像三维重建(十三):基于人体CT值从皮肤渐变到骨骼的梯度透明思路

C#开发PACS医学影像三维重建(十四):基于能量模型算法将曲面牙床展开至二维平面

熟手进阶篇

C#处理医学影像(一):基于Hessian矩阵的血管肺纹理骨骼增强对比

C#处理医学影像(二):基于Hessian矩阵的医学影像增强与窗宽窗位

C#处理医学影像(三):基于漫水边界自动选取病灶范围的实现思路

C#处理医学影像(四):基于Stitcher算法拼接人体全景脊柱骨骼影像

胶片打印:

C#开发医学影像胶片打印系统(一):万能花式布局的实现思路

C#开发医学影像胶片打印系统(二):胶片打印机通讯

C#开发医学影像胶片打印系统(三):Pacs二维功能在排版中的应用

登峰造极篇

C#开发基于Python人工智能的肺结节自动检测

C#开发基于Python人工智能的脊柱侧弯曲率算法

C#开发基于Python机器学习的医学影像骨骼仿真动画

C#开发基于Python机器学习的术后恢复模拟

C#开发基于U3D的VR眼镜设备虚拟人体三维重建

C#开发基于全息投影的裸眼3D医学影像显示技术

免费下载

免费下载使用本教程PACS软件

这篇关于C#开发PACS医学影像处理系统(十三):绘图处理之病灶测量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/378093

相关文章

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof