基于openCV数字图像与机器视觉(转为HSV/HSI、将车牌数字分割为单个的字符图片)

本文主要是介绍基于openCV数字图像与机器视觉(转为HSV/HSI、将车牌数字分割为单个的字符图片),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、彩色图像文件转为灰度文件
    • 1. 使用opencv
    • 2. 不使用opencv
  • 二、将彩色图像转为HSV、HSI格式
    • 1. 转HSV
    • 2. 转HSI
  • 三、车牌数字分割为单个的字符图片
    • 1.图片准备
    • 2. 代码实现
      • 1. 读取图片
      • 2. 图片预处理
    • 3. 输出结果
    • 4. 源码
  • 四、参考

一、彩色图像文件转为灰度文件

1. 使用opencv

代码:

import cv2 as cv
img = cv.imread('./pic/lena.png',1)
img_1 = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
cv.imshow('gray',img_1)
cv.imshow('colour',img)
cv.waitKey(0)

效果:
在这里插入图片描述

2. 不使用opencv

代码:

from PIL import Image
I = Image.open('./pic/lena.png')
L = I.convert('L')
L.show()

效果:
在这里插入图片描述

二、将彩色图像转为HSV、HSI格式

1. 转HSV

HSV 格式: H 代表色彩,S 代表颜色的深浅,V 代表着颜色的明暗程度。

HSV 颜色空间可以很好地把颜色信息和亮度信息分开,将它们放在不同的通道中,减小了光线对于特定颜色识别的影响。
在阴影检测算法中经常需要将RGB格式的图像转化为HSV格式,对于阴影区域而言,它的色度和饱和度相对于原图像而言变化不大,主要是亮度信息变化较大,,将RGB格式转化为HSV格式,就可以得到H、S、V分量,从而得到色度、饱和度、亮度得值;
代码:

import cv2 as cvimg = cv.imread('./pic/lena.png', 1)
cv.imshow('original image', img)
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)
cv.imshow('HSV format image', hsv)
cv.waitKey(0)

效果:
在这里插入图片描述

2. 转HSI

HSL (色相hue, 饱和度saturation, 亮度lightness/luminance),
也称HLS 或 HSI (I指intensity)
与 HSV非常相似,仅用亮度(lightness)替代了明度(brightness)。
人的视觉对亮度的敏感程度远强于对颜色浓淡的敏感程度,为了便于颜色处理和识别,人的市局系统经常采用HSI彩色空间,它比RGB空间更符合人的视觉特性。此外,由于HSI空间中亮度和色度具有可分离性,使得图像处理和机器视觉中大量灰度处理算法都可在HSI空间方便进行
HSI颜色空间:
在这里插入图片描述
代码:

import cv2
import numpy as npdef rgbtohsi(rgb_lwpImg):rows = int(rgb_lwpImg.shape[0])cols = int(rgb_lwpImg.shape[1])b, g, r = cv2.split(rgb_lwpImg)# 归一化到[0,1]b = b / 255.0g = g / 255.0r = r / 255.0hsi_lwpImg = rgb_lwpImg.copy()H, S, I = cv2.split(hsi_lwpImg)for i in range(rows):for j in range(cols):num = 0.5 * ((r[i, j]-g[i, j])+(r[i, j]-b[i, j]))den = np.sqrt((r[i, j]-g[i, j])**2+(r[i, j]-b[i, j])*(g[i, j]-b[i, j]))theta = float(np.arccos(num/den))if den == 0:H = 0elif b[i, j] <= g[i, j]:H = thetaelse:H = 2*3.14169265 - thetamin_RGB = min(min(b[i, j], g[i, j]), r[i, j])sum = b[i, j]+g[i, j]+r[i, j]if sum == 0:S = 0else:S = 1 - 3*min_RGB/sumH = H/(2*3.14159265)I = sum/3.0# 输出HSI图像,扩充到255以方便显示,一般H分量在[0,2pi]之间,S和I在[0,1]之间hsi_lwpImg[i, j, 0] = H*255hsi_lwpImg[i, j, 1] = S*255hsi_lwpImg[i, j, 2] = I*255return hsi_lwpImg
if __name__ == '__main__':rgb_lwpImg = cv2.imread("./pic/lena.png")hsi_lwpImg = rgbtohsi(rgb_lwpImg)cv2.imshow('lena.jpg', rgb_lwpImg)cv2.imshow('hsi_lwpImg', hsi_lwpImg)key = cv2.waitKey(0) & 0xFFif key == ord('q'):cv2.destroyAllWindows()

效果:
在这里插入图片描述

三、车牌数字分割为单个的字符图片

1.图片准备

在这里插入图片描述

2. 代码实现

1. 读取图片

file_path = "./pic/License/"
licenses = os.listdir(file_path)
for license in licenses:path = file_path+licenseoutput_path = "./pic/"+license # 图片输出路径# 如果该路径存在则删除if os.path.isdir(output_path):shutil.rmtree(output_path)# 创建文件夹os.mkdir(output_path)# 1.读取图片src = cv2.imread(path)img = src.copy()

2. 图片预处理

  • 去除车牌螺丝点
 # 去除车牌上螺丝,将其替换为车牌底色cv2.circle(img, (145, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (145, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (180, 90), 10, (255, 0, 0), thickness=-1)
  • 图片灰度处理
# 3.灰度gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  • 高斯滤波
# 4.高斯滤波GSblurred = cv2.GaussianBlur(gray, (5, 5), 12) # 参数自行调节
  • 二值化
# 5.将灰度图二值化设定阈值ret, thresh = cv2.threshold(GSblurred , 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)print("ret",ret)
  • 闭运算
# 6. 闭运算kernel = np.ones((3, 3), int)closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=2)
  • 分割字符
# 7.分割字符white = [] # 记录每一列的白色像素总和black = [] # ..........黑色.......height = thresh.shape[0]width = thresh.shape[1]white_max = 0black_max = 0# 计算每一列的黑白色像素总和for i in range(width):s = 0 # 这一列白色总数t = 0 # 这一列黑色总数for j in range(height):if thresh[j][i] == 255:s += 1if thresh[j][i] == 0:t += 1white_max = max(white_max, s)black_max = max(black_max, t)white.append(s)black.append(t)
  • 分割图像
arg = False  # False表示白底黑字;True表示黑底白字if black_max > white_max:arg = True# 分割图像def find_end(start_):end_ = start_ + 1for m in range(start_ + 1, width - 1):if (black[m] if arg else white[m]) > (0.95 * black_max if arg else 0.95 * white_max):  # 0.95这个参数请多调整,对应下面的0.05end_ = mbreakreturn end_n = 1start = 1end = 2i=0;cj=[]while n < width - 2:n += 1if (white[n] if arg else black[n]) > (0.05 * white_max if arg else 0.05 * black_max):# 上面这些判断用来辨别是白底黑字还是黑底白字# 0.05这个参数请多调整,对应上面的0.95start = nend = find_end(start)n = endif end - start > 5:cj.append(thresh[1:height, start:end])cv2.imwrite(output_path + '/' + str(i) + '.jpg', cj[i])i = i + 1;

3. 输出结果

在这里插入图片描述
部分展示
在这里插入图片描述

4. 源码

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""项目主题:车牌检测将车牌数字分割为单个的字符图片
"""
import os
import shutilimport cv2
import numpy as npfile_path = "./pic/License/"
licenses = os.listdir(file_path)
for license in licenses:path = file_path+licenseoutput_path = "./pic/"+license# 如果该路径存在则删除if os.path.isdir(output_path):shutil.rmtree(output_path)# 创建文件夹os.mkdir(output_path)# 1.读取图片src = cv2.imread(path)img = src.copy()# 2.去除车牌上螺丝,将其替换为车牌底色cv2.circle(img, (145, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (145, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (180, 90), 10, (255, 0, 0), thickness=-1)# 3.灰度gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 4.高斯滤波GSblurred = cv2.GaussianBlur(gray, (5, 5), 12)# 5.将灰度图二值化设定阈值ret, thresh = cv2.threshold(GSblurred , 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)print("ret",ret)# 6. 闭运算kernel = np.ones((3, 3), int)closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=2)二值化ret, thresh = cv2.threshold(closed, 127, 255, cv2.THRESH_BINARY+ cv2.THRESH_OTSU)# 7.分割字符white = [] # 记录每一列的白色像素总和black = [] # ..........黑色.......height = thresh.shape[0]width = thresh.shape[1]white_max = 0black_max = 0# 计算每一列的黑白色像素总和for i in range(width):s = 0 # 这一列白色总数t = 0 # 这一列黑色总数for j in range(height):if thresh[j][i] == 255:s += 1if thresh[j][i] == 0:t += 1white_max = max(white_max, s)black_max = max(black_max, t)white.append(s)black.append(t)# print(s)# print(t)arg = False  # False表示白底黑字;True表示黑底白字if black_max > white_max:arg = True# 分割图像def find_end(start_):end_ = start_ + 1for m in range(start_ + 1, width - 1):if (black[m] if arg else white[m]) > (0.95 * black_max if arg else 0.95 * white_max):  # 0.95这个参数请多调整,对应下面的0.05end_ = mbreakreturn end_n = 1start = 1end = 2i=0;cj=[]while n < width - 2:n += 1if (white[n] if arg else black[n]) > (0.05 * white_max if arg else 0.05 * black_max):# 上面这些判断用来辨别是白底黑字还是黑底白字# 0.05这个参数请多调整,对应上面的0.95start = nend = find_end(start)n = endif end - start > 5:cj.append(thresh[1:height, start:end])cv2.imwrite(output_path + '/' + str(i) + '.jpg', cj[i])i += 1;

四、参考

https://www.cnblogs.com/datou-swag/articles/10672207.html
https://blog.csdn.net/qq_47281915/article/details/121705585

这篇关于基于openCV数字图像与机器视觉(转为HSV/HSI、将车牌数字分割为单个的字符图片)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377706

相关文章

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.