用Python分析北上广深的春节返乡趋势

2023-11-09 18:00

本文主要是介绍用Python分析北上广深的春节返乡趋势,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=jpeg


作者:ElliotBai,全栈产品经理一枚


目录

  • 前言

  • 统计结果

  • 爬虫思路

  • 统计思路

  • 后记


前言

很早之前发过一篇关于某拼车平台爬虫的文章,因为工作比较忙,一直没有下文。最近年底稍微空了些,加上碰上春节返乡大潮,刚好再拿过来写一下数据分析的思路。

本次数据样本共13041条,本别采集了北京、上海、广州、深圳、杭州的某一天出行数据,由于手动操作难以保证取样的公平性,所以不能对全部数据结果的准确性做保证,本文以提供思路参考为主,先放一张路线图:

640?wx_fmt=png


统计结果

好了知道大家比较关心结果,所以先把结果放一放,后面再接着讲分析过程。


乘客性别

先单独把性别拎出来看一下,后面再根据城市进行分析,结果显示,抛开未设置性别的乘客不论,总体来看顺风车的用户群中,男性(占比49.39%)还是多于女性(占比31.55%)的。毕竟跨城顺风车,大过年的,女性乘客对于安全性的忧虑还有要有的。

640?wx_fmt=png



城市订单

真实数据的话订单数量应该是深圳 > 北京 > 广州 > 上海 > 杭州,但是同一个城市内的乘客性别比例应该还是具有一定的参考价值的,可以看到北京、上海、深圳的女性乘客数量占比都是高于男性的。 

640?wx_fmt=png



客单价

原本是想比较一下平均路程长度,但是想想这个事情太折腾了,由于平台主要还是依靠路程来计算拼车费用的,所以通过计算客单价的话大概也能反映一下平均形成长度(我猜的,然后结果是这样的,没想到广州是最高的,也可能是我统计错误

640?wx_fmt=png


哪里乘客最壕

有时候有些偏远地区订单或者顺路司机少,乘客会加价希望司机接单,于是统计了一下各城市加价订单的占比和平均的加价额度,得出如下结果:

占比最高的城市是深圳,平均加价额度最高的城市也是深圳,看来深圳的小哥哥小姐姐们的确出手阔错,然而加价比例最低的是北京,不过这也不能说明帝都人民不壕气,可能就是人家繁华,司机多。

640?wx_fmt=png


返乡路线图

最后放几张返乡的路线图


北京

640?wx_fmt=png


上海

640?wx_fmt=png

640?wx_fmt=png


广州

640?wx_fmt=jpeg

640?wx_fmt=png


深圳

640?wx_fmt=png


杭州

杭州明显有别与其它几个城市,一个是杭州的数据样本多,另外一个平台上杭州黄牛多,那些最远的单子就是黄牛广告单

640?wx_fmt=png

640?wx_fmt=png


爬虫思路

注册成为司机,利用mitm抓包存储拼车单


统计思路

数据的话我是通过本地Mongodb存储,所以直接用python操作Mongodb数据

Pymongo

关于Mongodb数据库的连接,直接上代码:


client = MongoClient('mongodb://localhost:27017')
spring = client.spring
collection = spring['orders']


以上代码的意思就是连接本地Mongodb-spring数据库-orders文档集合


Pyecharts

Pyecharts(http://pyecharts.org)是大名鼎鼎的Echarts的Python可视化图表库,用起来挺顺手的,而且文档规范,基本上可以零门槛入门,具体实现请移步文档。

这里介绍一下关于Pyecharts的图表样式配置,为了保持各图表的样式统一(偷懒),Pyecharts提供了一个Style类,可用于在同一个图或者多个图内保持统一的风格


from pyecharts import Style,Geo

style = Style(
   title_color="#fff",
   title_pos="center",
   width=1100,
   height=600,
   background_color='#404a59'
)
# style.init_style 会返回类初始化的风格配置字典
geo = Geo("全国主要城市空气质量", "data from pm2.5", **style.init_style)


这样,就创建了一个Geo地理坐标系图表


代码解读

因为全部代码有点长,所以抽了一段举个例子,主要思路就是从Mongodb取出指定数据,或者通过$group管道对数据进行处理,最后通过pyecharts生成相应的图表,呈现


from pymongo import MongoClient
from pyecharts import Style,GeoLines

def getLines(self):
   # 连接数据库
   client = MongoClient('mongodb://localhost:27017')
   spring = self.client.spring
   collection = self.spring['orders']
   
   # Mongodb的操作,$match-筛选出'from_poi.city.city_name'为'杭州'的文档,
   # 再通过$group管道,按照目标城市统计出汇总数量
   line_hangzhou = collection.aggregate([
       {'$match': {'from_poi.city.city_name': '杭州'}},
       {'$group': {'_id': '$to_poi.city.city_name', 'count': {'$sum': 1}}}
   ])
   # 按照Geolines图表的数据格式格式化数据
   line_hangzhou_ = []
   for line in line_hangzhou:
       line_hangzhou_.append(["杭州", line['_id'], line['count']])
       
   # 创建一个GeoLines图表
   citylines = GeoLines("春节迁移路线图", **style.init_style)
   # 添加数据以及样式
   citylines.add("从杭州出发",
                 line_hangzhou_,
                 **geo_style)
   # 生成html文件
   citylines.render("results/citylines.html")


长按关注下方公众号后,

回复返乡即可获取本文全部源码

640?wx_fmt=png


640?wx_fmt=gif


Python中文社区作为一个去中心化的全球技术社区,以成为全球20万Python中文开发者的精神部落为愿景,目前覆盖各大主流媒体和协作平台,与阿里、腾讯、百度、微软、亚马逊、开源中国、CSDN等业界知名公司和技术社区建立了广泛的联系,拥有来自十多个国家和地区数万名登记会员,会员来自以公安部、工信部、清华大学、北京大学、北京邮电大学、中国人民银行、中科院、中金、华为、BAT、谷歌、微软等为代表的政府机关、科研单位、金融机构以及海内外知名公司,全平台近20万开发者关注。


640?wx_fmt=png


▼ 点击下方阅读原文,免费成为社区注册会员 

这篇关于用Python分析北上广深的春节返乡趋势的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377694

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过