OHEM在线难例挖掘原理及在代码中应用

2023-11-08 20:20

本文主要是介绍OHEM在线难例挖掘原理及在代码中应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OHEM在线难例挖掘原理及在代码中应用

  • OHEM原理
  • 应用
    • PyTorch代码示例1:
    • PyTorch代码示例2:

OHEM原理

OHEM(Online Hard Example Mining)在线难例挖掘是一种用于优化神经网络训练的方法。通过在每个迭代中选择最难的样本进行训练,来提高模型的性能。在代码中可以通过使用损失函数和自定义采样器来实现。在传统的训练过程中,模型会在训练集中遇到大量易于分类的样本,而只有少量的难以分类的样本。这样一来,模型就会倾向于预测易于分类的样本,而忽略难以分类的样本。这样会导致模型无法很好地泛化到测试集上。

OHEM通过挖掘在线难例实现强化模型对难例的学习。具体来说,OHEM在每个batch的训练中选择一定数量(通常为batch size的1/2)的难例样本,这些难例样本的损失函数被优先考虑。因此,模型会更加关注难以分类的样本,在训练过程中逐渐学会处理难例样本的能力,提高模型的泛化性能。

应用

在自己的代码中应用OHEM,可以通过以下步骤:

  1. 定义一个损失函数,例如交叉熵损失。

  2. 在每个batch的训练过程中,计算所有样本的损失值,并按照损失值从大到小排序。

  3. 选择一定数量的样本作为难例样本,例如选择损失值排名前50%的样本。

  4. 将难例样本的损失函数乘以一个权重(例如2),以增加对难例样本的惩罚。

  5. 将难例样本和非难例样本的损失函数加权平均,得到本batch的总损失值。

  6. 根据总损失值更新模型参数。

PyTorch代码示例1:

import torch.nn.functional as F
import torch.optim as optim# 定义损失函数
loss_fn = F.cross_entropy
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)for epoch in range(num_epochs):for i, (inputs, labels) in enumerate(train_loader):# 前向传播outputs = model(inputs)# 计算所有样本的损失值loss = loss_fn(outputs, labels)# 按照损失值排序_, indices = torch.sort(loss, descending=True)# 选择难例样本num_hard = batch_size // 2hard_indices = indices[:num_hard]# 计算难例样本的损失函数,并乘以权重hard_loss = loss_fn(outputs[hard_indices], labels[hard_indices]) * 2# 将难例样本和非难例样本的损失函数加权平均total_loss = (loss.mean() * (batch_size - num_hard) + hard_loss) / batch_size# 反向传播和更新参数optimizer.zero_grad()total_loss.backward()optimizer.step()

在以上代码中,我们首先定义了一个交叉熵损失函数,然后在每个batch的训练过程中,按照损失值从大到小排序,并选择损失值排名前50%的样本作为难例样本。难例样本的损失函数乘以了一个权重2,以增加对难例样本的惩罚。最终,我们将难例样本和非难例样本的损失函数加权平均得到本batch的总损失值,并根据总损失值更新模型参数。

PyTorch代码示例2:

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor# 定义模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, kernel_size=5)self.conv2 = nn.Conv2d(10, 20, kernel_size=5)self.fc = nn.Linear(320, 10)def forward(self, x):x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))x = x.view(-1, 320)x = self.fc(x)return x# 定义OHEM损失函数
class OHMELoss(nn.Module):def __init__(self, ratio=3):super(OHMELoss, self).__init__()self.ratio = ratiodef forward(self, input, target):loss = nn.functional.cross_entropy(input, target, reduction='none')num_samples = len(loss)num_hard_samples = int(num_samples / self.ratio)_, indices = torch.topk(loss, num_hard_samples)ohem_loss = torch.mean(loss[indices])return ohem_loss# 加载数据集
train_dataset = MNIST(root='data', train=True, transform=ToTensor(), download=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)# 初始化模型和损失函数
model = Net()
criterion = OHMELoss()# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
epochs = 10
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))# 测试模型
test_dataset = MNIST(root='data', train=False, transform=ToTensor())
test_loader = DataLoader(test_dataset, batch_size=1000)
model.eval()
correct = 0
with torch.no_grad():for data, target in test_loader:output = model(data)_, predicted = torch.max(output.data, 1)correct += (predicted == target).sum().item()
print('Test Accuracy:', correct / len(test_loader.dataset))

在代码中,我们首先定义了模型,并使用OHMELoss作为损失函数。OHMELoss定义中的ratio=3表示每个迭代中选择三倍于正常的样本数量进行训练。

在训练过程中,我们使用torch.topk函数选择最难的样本进行训练。在测试过程中,我们使用model.eval()将模型设为评估模式,并计算模型的准确率。

这个示例展示了如何在PyTorch中使用OHEM进行训练,但具体的实现方式可能因应用场景而异。

这篇关于OHEM在线难例挖掘原理及在代码中应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372275

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.