OHEM在线难例挖掘原理及在代码中应用

2023-11-08 20:20

本文主要是介绍OHEM在线难例挖掘原理及在代码中应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OHEM在线难例挖掘原理及在代码中应用

  • OHEM原理
  • 应用
    • PyTorch代码示例1:
    • PyTorch代码示例2:

OHEM原理

OHEM(Online Hard Example Mining)在线难例挖掘是一种用于优化神经网络训练的方法。通过在每个迭代中选择最难的样本进行训练,来提高模型的性能。在代码中可以通过使用损失函数和自定义采样器来实现。在传统的训练过程中,模型会在训练集中遇到大量易于分类的样本,而只有少量的难以分类的样本。这样一来,模型就会倾向于预测易于分类的样本,而忽略难以分类的样本。这样会导致模型无法很好地泛化到测试集上。

OHEM通过挖掘在线难例实现强化模型对难例的学习。具体来说,OHEM在每个batch的训练中选择一定数量(通常为batch size的1/2)的难例样本,这些难例样本的损失函数被优先考虑。因此,模型会更加关注难以分类的样本,在训练过程中逐渐学会处理难例样本的能力,提高模型的泛化性能。

应用

在自己的代码中应用OHEM,可以通过以下步骤:

  1. 定义一个损失函数,例如交叉熵损失。

  2. 在每个batch的训练过程中,计算所有样本的损失值,并按照损失值从大到小排序。

  3. 选择一定数量的样本作为难例样本,例如选择损失值排名前50%的样本。

  4. 将难例样本的损失函数乘以一个权重(例如2),以增加对难例样本的惩罚。

  5. 将难例样本和非难例样本的损失函数加权平均,得到本batch的总损失值。

  6. 根据总损失值更新模型参数。

PyTorch代码示例1:

import torch.nn.functional as F
import torch.optim as optim# 定义损失函数
loss_fn = F.cross_entropy
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)for epoch in range(num_epochs):for i, (inputs, labels) in enumerate(train_loader):# 前向传播outputs = model(inputs)# 计算所有样本的损失值loss = loss_fn(outputs, labels)# 按照损失值排序_, indices = torch.sort(loss, descending=True)# 选择难例样本num_hard = batch_size // 2hard_indices = indices[:num_hard]# 计算难例样本的损失函数,并乘以权重hard_loss = loss_fn(outputs[hard_indices], labels[hard_indices]) * 2# 将难例样本和非难例样本的损失函数加权平均total_loss = (loss.mean() * (batch_size - num_hard) + hard_loss) / batch_size# 反向传播和更新参数optimizer.zero_grad()total_loss.backward()optimizer.step()

在以上代码中,我们首先定义了一个交叉熵损失函数,然后在每个batch的训练过程中,按照损失值从大到小排序,并选择损失值排名前50%的样本作为难例样本。难例样本的损失函数乘以了一个权重2,以增加对难例样本的惩罚。最终,我们将难例样本和非难例样本的损失函数加权平均得到本batch的总损失值,并根据总损失值更新模型参数。

PyTorch代码示例2:

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor# 定义模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, kernel_size=5)self.conv2 = nn.Conv2d(10, 20, kernel_size=5)self.fc = nn.Linear(320, 10)def forward(self, x):x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))x = x.view(-1, 320)x = self.fc(x)return x# 定义OHEM损失函数
class OHMELoss(nn.Module):def __init__(self, ratio=3):super(OHMELoss, self).__init__()self.ratio = ratiodef forward(self, input, target):loss = nn.functional.cross_entropy(input, target, reduction='none')num_samples = len(loss)num_hard_samples = int(num_samples / self.ratio)_, indices = torch.topk(loss, num_hard_samples)ohem_loss = torch.mean(loss[indices])return ohem_loss# 加载数据集
train_dataset = MNIST(root='data', train=True, transform=ToTensor(), download=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)# 初始化模型和损失函数
model = Net()
criterion = OHMELoss()# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
epochs = 10
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))# 测试模型
test_dataset = MNIST(root='data', train=False, transform=ToTensor())
test_loader = DataLoader(test_dataset, batch_size=1000)
model.eval()
correct = 0
with torch.no_grad():for data, target in test_loader:output = model(data)_, predicted = torch.max(output.data, 1)correct += (predicted == target).sum().item()
print('Test Accuracy:', correct / len(test_loader.dataset))

在代码中,我们首先定义了模型,并使用OHMELoss作为损失函数。OHMELoss定义中的ratio=3表示每个迭代中选择三倍于正常的样本数量进行训练。

在训练过程中,我们使用torch.topk函数选择最难的样本进行训练。在测试过程中,我们使用model.eval()将模型设为评估模式,并计算模型的准确率。

这个示例展示了如何在PyTorch中使用OHEM进行训练,但具体的实现方式可能因应用场景而异。

这篇关于OHEM在线难例挖掘原理及在代码中应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372275

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python