【网络流24题-2】太空飞行计划

2023-11-08 19:50
文章标签 网络 计划 24 太空飞行

本文主要是介绍【网络流24题-2】太空飞行计划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题面

Description

W 教授正在为国家航天中心计划一系列的太空飞行。每次太空飞行可进行一系列商业性实验而获取利润。现已确定了一个可供选择的实验集合 E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的集合I={I1, I2,…In}。 实验 Ej需要用到的仪器是I的子集。配置仪器Ik的费用为ck美元。实验Ej的赞助商已同意为该实验结果支付pj美元。W教授的任务是找出一个有效算法, 确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大。这里净收益是指进行实验所获得的全部收入与配置仪器的全部费用的差额。

【编程任务】:

对于给定的实验和仪器配置情况,编程找出净收益最大的试验计划。

Input

输入文件的第1行有 2 个正整数 m和n(0 < m,n <= 100)。m是实验数,n是仪器数。接下来的 m 行,每行是一个实验的有关数据。第一个数赞助商同意支付该实验的费用;接着是该实验需要用到的若干仪器的编号,以一个0作为行的结束标记。最后一行的 n个数是配置每个仪器的费用。

Output

输出文件的第1行是实验编号;第2行是仪器编号;最后一行是净收益。

Sample Input

2 3

10 1 2 0

25 2 3 0

5 6 7

Sample Output

1 2

1 2 3

17

题目分析:最大权闭合子图(转自hihoCoder)

描述

周末,小Hi和小Ho所在的班级决定举行一些班级建设活动。

根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值。

班级一共有M名学生(编号1..M),邀请编号为i的同学来参加班级建设活动需要消耗b[i]的活跃值。

每项活动都需要某些学生在场才能够进行,若其中有任意一个学生没有被邀请,这项活动就没有办法进行。

班级建设的活跃值是活动产生的总活跃值减去邀请学生所花费的活跃值。

小Hi和小Ho需要选择进行哪些活动,来保证班级建设的活跃值尽可能大。

比如有3项活动,4名学生:

第1项活动产生5的活跃值,需要编号为1、2的学生才能进行;

第2项活动产生10的活跃值,需要编号为3、4的学生才能进行;

第3项活动产生8的活跃值,需要编号为2、3、4的学生才能进行。

编号为1到4的学生需要消耗的活跃值分别为6、3、5、4。

假设举办活动集合为{1},需要邀请的学生集合为{1,2},则得到的班级活跃值为5-9 = -4。

假设举办活动集合为{2},需要邀请的学生集合为{3,4},则得到的班级活跃值为10-9 = 1。

假设举办活动集合为{2,3},需要邀请的学生集合为{2,3,4},则得到的班级活跃值为18-12 = 6。

假设举办活动集合为{1,2,3},需要邀请的学生集合为{1,2,3,4},则得到的班级活跃值为23-18 = 5。

最大权闭合子图

小Hi和小Ho总是希望班级活跃值越大越好,因此在这个例子中,他们会选择举行活动2和活动3。

小Ho:这次的问题好像还是很麻烦的样子啊。

小Hi:没错,小Ho你有什么想法么?

小Ho:我么?我能想到只有枚举啦。因为每一项活动都只有举行和不举行两种状态,因此我直接用O(2^N)的枚举,再对选出来的情况进行计算。最后选出最大的方案。

小Hi:这很明显会超过时间限制吧。

小Ho:我知道啊,那有什么好的方法么?

小Hi:当然有啊,这次我们需要解决的是闭合子图问题。

小Ho:这个闭合子图是啥?

小Hi:所谓闭合子图就是给定一个有向图,从中选择一些点组成一个点集V。对于V中任意一个点,其后续节点都仍然在V中。比如:

1.jpg

在这个图中有8个闭合子图:∅,{3},{4},{2,4},{3,4},{1,3,4},{2,3,4},{1,2,3,4}

小Ho:闭合子图我懂了,但是这跟我们这次的问题有啥关系呢?

小Hi:我们先把这次的问题转化为2分图。将N个活动看作A部,将M个学生看作B部。若第i个活动需要第j个学生,就连一条从A[i]到B[j]的有向边。比如对于例子:

2.jpg

假如选择A[1],则我们需要同时选择B[1],B[2]。那么选择什么活动和其需要的学生,是不是就刚好对应了这个图中的一个闭合子图呢?

小Ho:你这么一说好像还真是。如果把活跃值算作权值,A部的节点包含有正的权值,B部的节点是负的权值。那么我们要求的也就是一个权值最大的闭合子图了?

小Hi:没错,我们要求解的正是最大权闭合子图。它的求解方法是使用网络流,因此我们需要将这个图再进一步转化为网络流图。

对于一般的图来说:首先建立源点s和汇点t,将源点s与所有权值为正的点相连,容量为权值;将所有权值为负的点与汇点t相连,容量为权值的绝对值;权值为0的点不做处理;同时将原来的边容量设置为无穷大。举个例子:

4.jpg

对于我们题目中的例子来说,其转化的网络流图为:

3.jpg

上图中黑边表示容量无穷大的边。

小Ho:转化模型这一步看上去不是太难,然后呢?

小Hi:先说说结论吧,最大权闭合子图的权值等于所有正权点之和减去最小割。

接下来来证明这个结论,首先我们要证明两个引理:

\1. 最小割一定是简单割

简单割指得是:割(S,T)中每一条割边都与s或者t关联,这样的割叫做简单割。

因为在图中将所有与s相连的点放入割集就可以得到一个割,且这个割不为正无穷。而最小割一定小于等于这个割,所以最小割一定不包含无穷大的边。因此最小割一定一个简单割。

\2. 简单割一定和一个闭合子图对应

闭合子图V和源点s构成S集,其余点和汇点t构成T集。

首先证明闭合子图是简单割:若闭合子图对应的割(S,T)不是简单割,则存在一条边(u,v),u∈S,v∈T,且c(u,v)=∞。说明u的后续节点v不在S中,产生矛盾。

接着证明简单割是闭合子图:对于V中任意一个点u,u∈S。u的任意一条出边c(u,v)=∞,不会在简单割的割边集中,因此v不属于T,v∈S。所以V的所有点均在S中,因此S-s是闭合子图。

由上面两个引理可以知道,最小割也对应了一个闭合子图,接下来证明最小割就是最大权的闭合子图。

首先有割的容量C(S,T)=T中所有正权点的权值之和+S中所有负权点的权值绝对值之和。

闭合子图的权值W=S中所有正权点的权值之和-S中所有负权点的权值绝对值之和。

则有C(S,T)+W=T中所有正权点的权值之和+S中所有正权点的权值之和=所有正权点的权值之和。

所以W=所有正权点的权值之和-C(S,T)

由于所有正权点的权值之和是一个定值,那么割的容量越小,W也就越大。因此当C(S,T)取最小割时,W也就达到了最大权。

小Ho:我懂了,因为最小割也对应了一个闭合子图,因此它是可以被取得的,W也才能够到达最大权值。

小Hi:没错,这就是前面两条引理的作用。

小Ho:那么最小割的求解就还是用最大流来完成好了!

小Hi:嗯,那就交给你了。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=205;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int n,m,S,T,num;
struct node{int next,to,pair,flow;}g[N*N];
int h[N],cnt;
void AddEdge(int x,int y,int z){g[++cnt].to=y,g[cnt].next=h[x],h[x]=cnt,g[cnt].flow=z,g[cnt].pair=cnt+1;g[++cnt].to=x,g[cnt].next=h[y],h[y]=cnt,g[cnt].flow=0,g[cnt].pair=cnt-1;
}
int ans,GAP[N],dis[N];
int Dfs(int x,int Maxf){if(x==T||!Maxf)return Maxf;int ret=0;for(int i=h[x];i;i=g[i].next){int to=g[i].to;if(g[i].flow&&dis[x]==dis[to]+1){int dlt=Dfs(to,min(g[i].flow,Maxf-ret));g[i].flow-=dlt;g[g[i].pair].flow+=dlt;ret+=dlt;if(dis[S]==num||ret==Maxf)return ret;}}if(!(--GAP[dis[x]]))dis[S]=num;else GAP[++dis[x]]++;return ret;
}
int SAP(){int ans=0;while(dis[S]<num)ans+=Dfs(S,MAXN);return ans;
}#include<queue>
priority_queue<int,vector<int>,greater<int> >q;
bool vis[N];
void Find(int x){if(x)q.push(x);vis[x]=1;for(int i=h[x];i;i=g[i].next){int to=g[i].to;if(g[i].flow&&!vis[to])Find(to);}
}
int sum=0;
int main(){m=Getint(),n=Getint(),S=0,T=n+m+1,num=n+m+2;for(int i=1;i<=m;i++){int x=Getint();sum+=x;AddEdge(S,i,x);for(int x=Getint();x;x=Getint())AddEdge(i,x+m,MAXN);}for(int i=1;i<=n;i++)AddEdge(i+m,T,Getint());int ret=SAP();Find(S);while(q.top()<=m)cout<<q.top()<<' ',q.pop();cout<<'\n';while(!q.empty())cout<<q.top()-m<<' ',q.pop();cout<<'\n';cout<<sum-ret;return 0;
}

转载于:https://www.cnblogs.com/Emiya-wjk/p/10066522.html

这篇关于【网络流24题-2】太空飞行计划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372113

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor