YOLOv8-seg 分割代码详解(一)Predict

2023-11-08 18:28

本文主要是介绍YOLOv8-seg 分割代码详解(一)Predict,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  本文从 U-Net 入手熟悉分割的简单方法,再看 YOLOv8 的方法。主要梳理 YOLOv8 的网络结构,以及 Predict 过程的后处理方法。

U-Net 代码地址:https://github.com/milesial/Pytorch-UNet
YOLOv8 代码地址:https://github.com/ultralytics/ultralytics
YOLOv8 官方文档:https://docs.ultralytics.com/

1. U-Net

1.1 网络结构

在这里插入图片描述

CBR
Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace=True)

1.2 转置卷积

torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None
)

H o u t = ( H i n − 1 ) × stride [ 0 ] − 2 × padding [ 0 ] + dilation [ 0 ] × ( kernel_size [ 0 ] − 1 ) + output_padding [ 0 ] + 1 H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1 Hout=(Hin1)×stride[0]2×padding[0]+dilation[0]×(kernel_size[0]1)+output_padding[0]+1
W o u t = ( W i n − 1 ) × stride [ 1 ] − 2 × padding [ 1 ] + dilation [ 1 ] × ( kernel_size [ 1 ] − 1 ) + output_padding [ 1 ] + 1 W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1 Wout=(Win1)×stride[1]2×padding[1]+dilation[1]×(kernel_size[1]1)+output_padding[1]+1

  • stride
    控制原图像素之间的填充量,数值为 stride − 1 \text{stride}-1 stride1
  • kernel_size,padding
    kernel_size 为转置卷积核大小,并且和 padding 一同决定原图四周填充量,数值为 kernel_size − padding − 1 \text{kernel\_size}-\text{padding}-1 kernel_sizepadding1
  • dilation
    控制卷积核采样点的间距(空洞卷积),默认为1,即最普通的卷积

注:转置卷积在卷积时的 stride 固定为1,output_padding 固定为0;而参数中设置的 stride、padding 用于控制卷积之前对输入的填充

kernel_size = 2 , stride = 2 , padding = 0 , H i n = 640 , W i n = 640 \text{kernel\_size}=2,\text{stride}=2,\text{padding}=0,H_{in}=640,W_{in}=640 kernel_size=2,stride=2,padding=0,Hin=640,Win=640 为例

  1. 像素间填充 2-1=1, 640 × 640 → 1279 × 1279 640\times640\to1279\times1279 640×6401279×1279
  2. 四周填充 2-0-1=1, 1279 × 1279 → 1281 × 1281 1279\times1279\to1281\times1281 1279×12791281×1281
  3. 2x2卷积, 1281 × 1281 → 1280 × 1280 1281\times1281\to1280\times1280 1281×12811280×1280

查看不同卷积的可视化:https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

1.3 Loss

单分类
loss = BCEWithLogitsLoss(P, Y) + dice_loss(sigmoid(P), Y)
多分类
loss = CrossEntropyLoss(P, Y) + dice_loss(softmax(P), one_hot(Y))

(1)BCEWithLogitsLoss
对于每个样本 l = − [ y l o g σ ( x ) + ( 1 − y ) l o g ( 1 − σ ( x ) ) ] l=-[ylog\sigma (x)+(1-y)log(1-\sigma (x))] l=[ylogσ(x)+(1y)log(1σ(x))],最后求均值

(2)dice_loss

l = 1 − sum ( 2 × P × Y ) sum ( P ) + sum ( Y ) l = 1-\frac{\text{sum}(2\times P\times Y)}{\text{sum}(P)+\text{sum}(Y)} l=1sum(P)+sum(Y)sum(2×P×Y)

这里的 Y Y Y 作为标签是固定的, P P P 通过让目标区域值靠近1提高分子值,背景区域靠近0降低分母值,即 P → Y P\to Y PY,从而降低loss

1.4 Predict

单分类
mask = sigmoid(P) > threshold
多分类
mask = P.argmax(dim=1)

2. YOLOv8-seg

2.1 网络结构

  结构图中数据按 yolov8m-seg 的 predict 过程绘制,输入图像为 1280x720,预处理时通过 LetterBox 对图像进行保长宽比缩放和 padding,使其长宽都能被最大下采样倍率32整除。在 train 过程中,输入大小统一为 640x640。

主干

在这里插入图片描述

CBS
Conv2d(3, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
SiLU(inplace=True)

C2f 模块
在这里插入图片描述
SPPF
在这里插入图片描述

Segment-head

分割
在这里插入图片描述
检测
在这里插入图片描述
注:DLF层中的卷积层参数是固定的,在这里是 torch.arange(16)

Anchor
  Anchor坐标是把特征图看做一个网格,每个像素边长为1,把每个格子的中心点坐标取出来。以 x0 (h=48,w=80) 为例,左上角坐标为 (0.5,0.5),右下角点为 (79.5,47.5)
  DLF的输出对应目标框左上角坐标和右下角坐标到Anchor坐标的距离,与Anchor融合并乘上对应的下采样倍率得到 dbox

lt, rb = dfl(box).chunk(2, dim=1)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb

2.2 预测

模型推理输出

Y:	[b,4,5040]
mc: [b,32,5040]
p:	[b,32,96,160]Y为检测结果,4对应检测框坐标
mc为分割结果,32对应分割的特征向量,通过和p做矩阵乘法可以转化成mask形式模型最终推理的输出preds包含两项
(1)torch.cat(y, mc], 1), 即检测和分割的结果, shape:[b,37,5040]
(2)包含3项的元组a. [x0, x1, x2], 即detect层的中间输出b. mc 	[b,32,5040]c. p	[b,32,96,160]

NMS

p = nms((20,37,5040), conf=0.25, iou=0.7, agnostic=False, max_det=300, nc=1)(1) 分类得分阈值筛选 class_scores > conf=0.25
[5040,37] --> [n1,37]
(2) 提取类别
[n1,37] --> [n1,38] (xyxy, cls_score, cls, 32)
(3) 若此时box数量大于 max_nms=30000, 选取 cls_score 较大的30000(4) 调库 torchvision.ops.nms(boxes, scores, iou_thres), 选取前 max_det=300[n1,38] --> [n2,38]
(5) nms-merge, 默认跳过

mask

masks = process_mask(protos,					模型输出p [b,32,96,160]masks_in=pred[:, 6:], 	nms结果的mask部分bboxes=pred[:, :4], 	nms结果的box部分shape=img.shape[2:], 	输入图像大小(384,640)upsample=True
)def process_mask(protos, masks_in, bboxes, shape, upsample=False):c, mh, mw = protos.shapeih, iw = shape"""矩阵乘法+sigmoid得到mask"""masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)"""比例变换"""downsampled_bboxes = bboxes.clone()downsampled_bboxes[:, 0] *= mw / iwdownsampled_bboxes[:, 2] *= mw / iwdownsampled_bboxes[:, 3] *= mh / ihdownsampled_bboxes[:, 1] *= mh / ih"""裁减掉box范围以外的值"""masks = crop_mask(masks, downsampled_bboxes)  # CHWif upsample:masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW"""按阈值0.5转为二值图mask"""return masks.gt_(0.5)

这篇关于YOLOv8-seg 分割代码详解(一)Predict的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371692

相关文章

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.