YOLOv8-seg 分割代码详解(一)Predict

2023-11-08 18:28

本文主要是介绍YOLOv8-seg 分割代码详解(一)Predict,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  本文从 U-Net 入手熟悉分割的简单方法,再看 YOLOv8 的方法。主要梳理 YOLOv8 的网络结构,以及 Predict 过程的后处理方法。

U-Net 代码地址:https://github.com/milesial/Pytorch-UNet
YOLOv8 代码地址:https://github.com/ultralytics/ultralytics
YOLOv8 官方文档:https://docs.ultralytics.com/

1. U-Net

1.1 网络结构

在这里插入图片描述

CBR
Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace=True)

1.2 转置卷积

torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None
)

H o u t = ( H i n − 1 ) × stride [ 0 ] − 2 × padding [ 0 ] + dilation [ 0 ] × ( kernel_size [ 0 ] − 1 ) + output_padding [ 0 ] + 1 H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1 Hout=(Hin1)×stride[0]2×padding[0]+dilation[0]×(kernel_size[0]1)+output_padding[0]+1
W o u t = ( W i n − 1 ) × stride [ 1 ] − 2 × padding [ 1 ] + dilation [ 1 ] × ( kernel_size [ 1 ] − 1 ) + output_padding [ 1 ] + 1 W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1 Wout=(Win1)×stride[1]2×padding[1]+dilation[1]×(kernel_size[1]1)+output_padding[1]+1

  • stride
    控制原图像素之间的填充量,数值为 stride − 1 \text{stride}-1 stride1
  • kernel_size,padding
    kernel_size 为转置卷积核大小,并且和 padding 一同决定原图四周填充量,数值为 kernel_size − padding − 1 \text{kernel\_size}-\text{padding}-1 kernel_sizepadding1
  • dilation
    控制卷积核采样点的间距(空洞卷积),默认为1,即最普通的卷积

注:转置卷积在卷积时的 stride 固定为1,output_padding 固定为0;而参数中设置的 stride、padding 用于控制卷积之前对输入的填充

kernel_size = 2 , stride = 2 , padding = 0 , H i n = 640 , W i n = 640 \text{kernel\_size}=2,\text{stride}=2,\text{padding}=0,H_{in}=640,W_{in}=640 kernel_size=2,stride=2,padding=0,Hin=640,Win=640 为例

  1. 像素间填充 2-1=1, 640 × 640 → 1279 × 1279 640\times640\to1279\times1279 640×6401279×1279
  2. 四周填充 2-0-1=1, 1279 × 1279 → 1281 × 1281 1279\times1279\to1281\times1281 1279×12791281×1281
  3. 2x2卷积, 1281 × 1281 → 1280 × 1280 1281\times1281\to1280\times1280 1281×12811280×1280

查看不同卷积的可视化:https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

1.3 Loss

单分类
loss = BCEWithLogitsLoss(P, Y) + dice_loss(sigmoid(P), Y)
多分类
loss = CrossEntropyLoss(P, Y) + dice_loss(softmax(P), one_hot(Y))

(1)BCEWithLogitsLoss
对于每个样本 l = − [ y l o g σ ( x ) + ( 1 − y ) l o g ( 1 − σ ( x ) ) ] l=-[ylog\sigma (x)+(1-y)log(1-\sigma (x))] l=[ylogσ(x)+(1y)log(1σ(x))],最后求均值

(2)dice_loss

l = 1 − sum ( 2 × P × Y ) sum ( P ) + sum ( Y ) l = 1-\frac{\text{sum}(2\times P\times Y)}{\text{sum}(P)+\text{sum}(Y)} l=1sum(P)+sum(Y)sum(2×P×Y)

这里的 Y Y Y 作为标签是固定的, P P P 通过让目标区域值靠近1提高分子值,背景区域靠近0降低分母值,即 P → Y P\to Y PY,从而降低loss

1.4 Predict

单分类
mask = sigmoid(P) > threshold
多分类
mask = P.argmax(dim=1)

2. YOLOv8-seg

2.1 网络结构

  结构图中数据按 yolov8m-seg 的 predict 过程绘制,输入图像为 1280x720,预处理时通过 LetterBox 对图像进行保长宽比缩放和 padding,使其长宽都能被最大下采样倍率32整除。在 train 过程中,输入大小统一为 640x640。

主干

在这里插入图片描述

CBS
Conv2d(3, 48, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
SiLU(inplace=True)

C2f 模块
在这里插入图片描述
SPPF
在这里插入图片描述

Segment-head

分割
在这里插入图片描述
检测
在这里插入图片描述
注:DLF层中的卷积层参数是固定的,在这里是 torch.arange(16)

Anchor
  Anchor坐标是把特征图看做一个网格,每个像素边长为1,把每个格子的中心点坐标取出来。以 x0 (h=48,w=80) 为例,左上角坐标为 (0.5,0.5),右下角点为 (79.5,47.5)
  DLF的输出对应目标框左上角坐标和右下角坐标到Anchor坐标的距离,与Anchor融合并乘上对应的下采样倍率得到 dbox

lt, rb = dfl(box).chunk(2, dim=1)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb

2.2 预测

模型推理输出

Y:	[b,4,5040]
mc: [b,32,5040]
p:	[b,32,96,160]Y为检测结果,4对应检测框坐标
mc为分割结果,32对应分割的特征向量,通过和p做矩阵乘法可以转化成mask形式模型最终推理的输出preds包含两项
(1)torch.cat(y, mc], 1), 即检测和分割的结果, shape:[b,37,5040]
(2)包含3项的元组a. [x0, x1, x2], 即detect层的中间输出b. mc 	[b,32,5040]c. p	[b,32,96,160]

NMS

p = nms((20,37,5040), conf=0.25, iou=0.7, agnostic=False, max_det=300, nc=1)(1) 分类得分阈值筛选 class_scores > conf=0.25
[5040,37] --> [n1,37]
(2) 提取类别
[n1,37] --> [n1,38] (xyxy, cls_score, cls, 32)
(3) 若此时box数量大于 max_nms=30000, 选取 cls_score 较大的30000(4) 调库 torchvision.ops.nms(boxes, scores, iou_thres), 选取前 max_det=300[n1,38] --> [n2,38]
(5) nms-merge, 默认跳过

mask

masks = process_mask(protos,					模型输出p [b,32,96,160]masks_in=pred[:, 6:], 	nms结果的mask部分bboxes=pred[:, :4], 	nms结果的box部分shape=img.shape[2:], 	输入图像大小(384,640)upsample=True
)def process_mask(protos, masks_in, bboxes, shape, upsample=False):c, mh, mw = protos.shapeih, iw = shape"""矩阵乘法+sigmoid得到mask"""masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)"""比例变换"""downsampled_bboxes = bboxes.clone()downsampled_bboxes[:, 0] *= mw / iwdownsampled_bboxes[:, 2] *= mw / iwdownsampled_bboxes[:, 3] *= mh / ihdownsampled_bboxes[:, 1] *= mh / ih"""裁减掉box范围以外的值"""masks = crop_mask(masks, downsampled_bboxes)  # CHWif upsample:masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW"""按阈值0.5转为二值图mask"""return masks.gt_(0.5)

这篇关于YOLOv8-seg 分割代码详解(一)Predict的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371692

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit