野火霸天虎 STM32F407 学习笔记_3 尝试寄存器映射方式点亮 LED 灯

本文主要是介绍野火霸天虎 STM32F407 学习笔记_3 尝试寄存器映射方式点亮 LED 灯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

新建工程

寄存器方式

要命啊,一看名字我就不想试。寄存器新建不得麻烦死。

哎算了为了学习原理,干了。

我们尝试自己写一个寄存器的库函数来引用。

首先我们需要引用 st 官方启动文件 stmf4xx.s,具体用途后面章节再展开讲解。然后我们自己新建一个 stm32f4xx.h 文件来映射寄存器。不过只是把这个文件包含进项目,编译会报错:

.\Objects\led_reg.axf: Error: L6218E: Undefined symbol SystemInit (referred from startup_stm32f40xx.o).

进入启动文件后,可以看到这么一个函数:

; Reset handler
Reset_Handler    PROCEXPORT  Reset_Handler             [WEAK]IMPORT  SystemInitIMPORT  __mainLDR     R0, =SystemInitBLX     R0LDR     R0, =__mainBX      R0ENDP

import 的作用相当于 extern,所以没有找到这个函数的定义,需要我们自己去定义。这就是为什么简单引入了启动文件会报错。

而 __main 是当我们定义了 main() 函数后,编译器会自动链接一些c语言库定义好的函数,用于初始化堆栈并且调用我们的 main().

注意,如果想要生成 __main 函数,必须勾选下面这一项。

image-20231102200243099

野火你讲的是真好啊。我之前草草学了学 stm32 单片机用法,比赛的时候自己想移植代码,改了启动文件也不好使,就是报错。原来是这个原因。

那么我们只需要定义这么一个函数,哪怕内容是空都无所谓。

最终我们定义的初步项目框架如下:

1698926683862

stm32f4xx.h:内容为空,有这么个东西就行。

main.c:

#include "stm32f4xx.h"int main(){while(1){}
}void SystemInit(){}

好了,这个程序可以烧录到板子上的。烧录成功之后没有任何反应(因为本来程序也没做什么哈哈),但是这就是一个大进步了。

点灯——51单片机版

51单片机版就是引用 reg51.h 头文件,在其中声明了各个引脚的地址。我们只需要直接给引脚赋值即可。

调用代码:

#include "reg51.h"#ifdef 0 
void main(){PA0=0xFE;while(1){}
}
#endif

接下来我们需要定义 LED 灯的寄存器位置。阅读原理图如下:

1698939342199

大致可以看出,板子上的这个 RGB LED 通过三个引脚来控制 RGB 亮度。输出低电平则导通点亮。

具体输出方式是通过 ODR 进行输出。查找 stm32f4xx 中文参考手册可见:

1698940158585

1698940257044

那么我们就要给 0x4002 1400 +14 的地址赋值,让 1<<6 1<<7 1<<8 的位分别赋值为低电平.

int main(){*(unsigned int *)(0x40021400+14)&=~(1<<6); while(1){}
}

然而这样也不亮。亮就怪了,stm32 寄存器是需要先做初始化配置的。

点灯——stm32 版

首先我们要设置 GPIO 模式。

1698940961543

想点灯 输出高低电平,是 01 通用输出模式。

*(unsigned int *)(0x40021400+0)&=~(3<<(6*2)); 
*(unsigned int *)(0x40021400+0)|=(1<<(6*2)); 

意思是先把 PF6 模式位置为00,然后赋值为01通用输出。

配置完模式之后,还需要配置时钟,stm32 每个外设都需要配置时钟。

前面提到过 GPIO 是在 AHB1.

1699103516061

1699103724261

全部代码如下:

#include "stm32f4xx.h"int main(){//RCC*(unsigned int *)(0x40023800+0x30)|=(1<<5); //Mode*(unsigned int *)(0x40021400+0)&=~(3<<(6*2)); *(unsigned int *)(0x40021400+0)|=(1<<(6*2)); *(unsigned int *)(0x40021400+0x14)&=~(1<<6); while(1){}
}void SystemInit(){}

接下来,我们把这几个地址值提取出来,宏定义映射寄存器。

//stm32f4xx.h
/* 用来存放寄存器映射相关的代码 */
#define RCC_AHB1_ENR    *(unsigned int *)(0x40023800+0x30)
#define GPIOF_MODER     *(unsigned int *)(0x40021400+0)
#define GPIOF_ODR       *(unsigned int *)(0x40021400+0x14)//main.c
#include "stm32f4xx.h"int main(){//RCCRCC_AHB1_ENR|=(1<<5); //ModeGPIOF_MODER&=~(3<<(6*2)); GPIOF_MODER|=(1<<(6*2)); GPIOF_ODR&=~(1<<6); while(1){}
}void SystemInit(){}
点灯——流水灯闪烁

利用软件延时实现 RGB 流水灯闪烁。很简单,前面已经看了3个 LED 通道 PF678 了。

#include "stm32f4xx.h"void delay_ms(int time);int main(){//RCCRCC_AHB1_ENR|=(1<<5); //ModeGPIOF_MODER&=~(3<<(6*2)); GPIOF_MODER|=(1<<(6*2)); GPIOF_MODER&=~(3<<(7*2)); GPIOF_MODER|=(1<<(7*2)); GPIOF_MODER&=~(3<<(8*2));   GPIOF_MODER|=(1<<(8*2)); while(1){GPIOF_ODR|=(7<<6);GPIOF_ODR&=~(1<<6);delay_ms(1000);GPIOF_ODR|=(7<<6);GPIOF_ODR&=~(1<<7); delay_ms(1000);GPIOF_ODR|=(7<<6);GPIOF_ODR&=~(1<<8);delay_ms(1000);}
}void SystemInit(){}//毫秒级的延时
void delay_ms(int time)
{    int i=0;  while(time--){i=4000;while(i--) ;    }
}
点灯——GPIO 具体功能框图对应

GPIO:通用输入输出引脚。我们可以通过编程来输出或者读取数据。大部分 GPIO 是已经连接、定义好了一些功能(比如上面尝试过的 PF6 LED),有的引脚有多个功能支持重新映射。

STM32 GPIO 除了 adc 是 3.3v,其他 GPIO 都是 5v 容忍。

GPIO 框图(重点)如下:

image-20231104221140325

先从输出开始看。最右侧的 IO 引脚是连接在芯片周围一圈的144个引脚之一。除了 IO 引脚,此图中其他所有部分都是封装在芯片内部我们看不到的。

往左有两个保护二极管。当电压大于 5V,电流会往上 VDD_FT 走。当电压为负电压,电流会由 VSS 往 IO 引脚走。

上下拉电阻:比武外接一个低电平工作的设备,但是我们不希望一上电外设就工作,可以设置上拉电阻,稳定一段时间。

GPIO 输出的数据来源:复位寄存器 BSRR,或者 ODR 设置(图中的3下路部分)。复位寄存器高16位复位(写1置0)低16位置位(写1置1),置位优先级更高。

配置 GPIO 模式(输入/输出,选择哪一路)通过前面用过的 MODER 配置。

输出模式(图中输出控制部分)配置端口输出类型寄存器 OTYPER,比如推挽输出,开漏输出。

推挽输出:有直接驱动能力,输出0就是低电平,输出1就输出可以工作的高电平。原理是采用了一个放大的电路?

1699356797818

输入(INT)为高电平时,反向后 PMOS 导通,输出高电平。输入为低电平时,反向后 NMOS 导通,输出低电平。我们可以用一个小电流去驱动出来一个大电流。

开漏输出:自己本身没有输出高电平的手段。低电平可以接地,高电平没有 PMOS 管,是浮空状态。需要外接一个电阻。

1699357078909

stm32 输出 5V 电压的方法就是开漏输出外接电阻。通过接两个三极管的方式反向。

1699357296750

框图中的模拟部分输入输出则不用配置这些模式信息,直接由外设接到保护二极管再接到输出引脚。

框图中的输入部分经过保护电压后,还需要施密特触发器调整一下。比如原来电压的数值并非精确的0或 3.3V,施密特触发器将高于 1.8V 的全部视作1,低于的全部视作0后输入芯片。模拟部分则不需要经过施密特触发器。

因此配置 GPIO 输出的步骤如下:

  1. GPIO 功能,通用输出、复用功能、模拟输入等 MODER;
  2. 输出推挽 or 开漏 OTYPER;
  3. 输出速度 OSPEEDR;
  4. 上下拉电阻是否需要开启 PUPDR;
  5. 具体输出内容 BSRR or ODR.

输入部分后面输入实验介绍~

按整个流程重新串一遍代码,如下:(其实和前面差不多,就是重新按照流程串了一遍)

/* 用来存放寄存器映射相关的代码 */
#define RCC_BASE    (unsigned int *)    0x40023800
#define GPIOF_BASE  (unsigned int *)    0x40021400#define RCC_AHB1ENR         *(RCC_BASE+0x30)#define GPIOF_MODER         *(GPIOF_BASE+0x00)
#define GPIOF_OSPEEDR       *(GPIOF_BASE+0x08)
#define GPIOF_PUPDR         *(GPIOF_BASE+0x0C)
#define GPIOF_ODR           *(GPIOF_BASE+0x14)
#define GPIOF_BSRR          *(GPIOF_BASE+0x18)//main.c
#include "stm32f4xx.h"int main()
{RCC_AHB1ENR |= (1<<5);GPIOF_MODER &= ~(3<<(6*2));GPIOF_MODER |= (1<<(6*2));while (1){}
}void SystemInit()
{
}

烧录前记得勾选:use MicroLib.

这篇关于野火霸天虎 STM32F407 学习笔记_3 尝试寄存器映射方式点亮 LED 灯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370343

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

用命令行的方式启动.netcore webapi

用命令行的方式启动.netcore web项目 进入指定的项目文件夹,比如我发布后的代码放在下面文件夹中 在此地址栏中输入“cmd”,打开命令提示符,进入到发布代码目录 命令行启动.netcore项目的命令为:  dotnet 项目启动文件.dll --urls="http://*:对外端口" --ip="本机ip" --port=项目内部端口 例: dotnet Imagine.M