使用Streamlit创建AutoGen用户界面

2023-11-08 13:36

本文主要是介绍使用Streamlit创建AutoGen用户界面,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AutoGen作为一个最大化LLM(如GPT-4)能力的框架而脱颖而出。由微软研究院开发的AutoGen通过提供一种自动化、优化和编排工作流的方法,简化了复杂的、基于多代理llm的应用程序的创建。我们在以前的文章中也有过介绍,你可以与许多GPT交谈,并且GPT和GPT之间也可以互相交谈。每个GPT都是它自己的“代理”,并在总体业务流程中扮演特殊角色。但是AutoGen是用命令行模式进行交互的,这对我们的输入来说非常不方便,所以这次我们来对其进行改造,使用Streamlit创建一个web界面,这样可以让我们更好的与其交互。

这个项目略微粗糙,但它应该为为AutoGen代理创建简单的ui提供了一个很好的起点。

这里需要注意的是:

明确要求不要运行代码或将文件存储在本地,因为这是Streamlit限制—而不是AutoGen限制。

简单介绍AutoGen

我们之前已经介绍过AutoGen,所以这里再做个简单的回顾:

AutoGen自动化了LLM工作流,这在开发人员制作越来越复杂的基于LLM的应用程序时至关重要。

它提供了可定制的代理,这些代理不仅可以与用户进行自动对话,还可以在代理之间进行自动对话。

AutoGen代理可以合并llm、人工输入和其他工具的组合,克服每个组件单独的局限性。无论是代码生成、执行、调试还是复杂任务解决,AutoGen代理都可以处理各种高级操作。

创建Streamlit应用

我们的目标是这样的:

我们先安装如下包:

 aiohttp==3.8.6aiosignal==1.3.1altair==5.1.2async-timeout==4.0.3attrs==23.1.0blinker==1.6.3cachetools==5.3.2certifi==2023.7.22charset-normalizer==3.3.1click==8.1.7diskcache==5.6.3docker==6.1.3FLAML==2.1.1frozenlist==1.4.0gitdb==4.0.11GitPython==3.1.40idna==3.4importlib-metadata==6.8.0Jinja2==3.1.2jsonschema==4.19.1jsonschema-specifications==2023.7.1markdown-it-py==3.0.0MarkupSafe==2.1.3mdurl==0.1.2multidict==6.0.4numpy==1.26.1openai==0.28.1packaging==23.2pandas==2.1.2Pillow==10.1.0protobuf==4.24.4pyarrow==13.0.0pyautogen==0.1.13pydeck==0.8.1b0Pygments==2.16.1python-dateutil==2.8.2python-dotenv==1.0.0pytz==2023.3.post1referencing==0.30.2requests==2.31.0rich==13.6.0rpds-py==0.10.6six==1.16.0smmap==5.0.1streamlit==1.28.0tenacity==8.2.3termcolor==2.3.0toml==0.10.2toolz==0.12.0tornado==6.3.3tqdm==4.66.1typing_extensions==4.8.0tzdata==2023.3tzlocal==5.2urllib3==2.0.7validators==0.22.0websocket-client==1.6.4yarl==1.9.2zipp==3.17.0

然后创建

app.py

首先是导入包:

 import streamlit as stimport asynciofrom autogen import AssistantAgent, UserProxyAgent

streamlit用于创建UI。Asyncio对于异步控制流是必需的,它允许聊天响应。Autogen为聊天代理提供了类。

然后使用Streamlit的write函数设置应用的标题:

 st.write("# AutoGen Chat Agents")

这一行将在UI的顶部显示标题“AutoGen Chat Agents”。

然后就是创建自定义代理类,需要扩展AutoGen的AssistantAgent和UserProxyAgent:

 class TrackableAssistantAgent(AssistantAgent):def _process_received_message(self, message, sender, silent):with st.chat_message(sender.name):st.markdown(message)return super()._process_received_message(message, sender, silent)class TrackableUserProxyAgent(UserProxyAgent):def _process_received_message(self, message, sender, silent):with st.chat_message(sender.name):st.markdown(message)return super()._process_received_message(message, sender, silent)

这些类覆盖一个_process_received_message方法,在Streamlit聊天小部件中显示接收到的消息,为用户提供实时更新。

然后就是使用Streamlit的侧边栏功能进行配置:

 selected_model = Noneselected_key = Nonewith st.sidebar:st.header("OpenAI Configuration")selected_model = st.selectbox("Model", ['gpt-3.5-turbo', 'gpt-4'], index=1)selected_key = st.text_input("API Key", type="password")

这里可以使用我们上次文章的本地 LLM 方案,这样就不用使用openai的付费API了

AutoGen完整教程和加载本地LLM示例

然后就是创建主聊天界面并处理输入:

 with st.container():# for message in st.session_state["messages"]:#    st.markdown(message)user_input = st.chat_input("Type something...")if user_input:if not selected_key or not selected_model:st.warning('You must provide valid OpenAI API key and choose preferred model', icon="⚠️")st.stop()llm_config = {"request_timeout": 600,"config_list": [{"model": selected_model,"api_key": selected_key}]}

上面代码创建一个聊天输入字段,如果用户没有完成配置,将显示一个警告。

自定义我们的代理,并为异步聊天设置事件循环:

 # create an AssistantAgent instance named "assistant"assistant = TrackableAssistantAgent(name="assistant", llm_config=llm_config)# create a UserProxyAgent instance named "user"user_proxy = TrackableUserProxyAgent(name="user", human_input_mode="NEVER", llm_config=llm_config)# Create an event looploop = asyncio.new_event_loop()asyncio.set_event_loop(loop)

代理的配置需要根据我们的需求自行定义,我们这里只给一个演示。除此以外还要使用asyncio为应用程序处理异步操作做好准备。

最后定义并运行异步函数来启动聊天:

 async def initiate_chat():await user_proxy.a_initiate_chat(assistant,message=user_input,)# Run the asynchronous function within the event looploop.run_until_complete(initiate_chat())

当发送消息时,就可以在用户代理和助理代理之间发起聊天,结果如下:

总结

将AutoGen代理集成到Streamlit应用程序中,为创建由大型语言模型驱动的交互式智能ui提供了无数可能性。通过我们的以上代码可以建立一个响应式聊天界面,利用AutoGen的高级功能。AutoGen和Streamlit的结合为实现我们的需求提供了一个强大且对开发人员友好的途径。

本文完整代码:

https://avoid.overfit.cn/post/5b403f65a3084a9faf966b8bba0de2c7

作者:Dr. Ernesto Lee

这篇关于使用Streamlit创建AutoGen用户界面的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370205

相关文章

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected