阻容复位和按键复位 详解

2023-11-08 13:18
文章标签 详解 按键 复位 阻容

本文主要是介绍阻容复位和按键复位 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:陈俊直
链接:https://www.zhihu.com/question/21035836/answer/19153215
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

首先要理解为什么需要复位:

1:因为微处理器(如我们常说的电脑CPU芯片和高端ARM)和微控制器(单片机、低端ARM什么的)芯片都是数字电路芯片,其正常工作是只有0低电平和1高电平这两个电平状态,属于离散系统。而供给芯片的电源输入却是模拟电路,属于连续线性系统。合上开关,芯片的VDD和VSS之间的电压要达到数字芯片可正常工作的电压是需要几毫秒到十几毫秒的过程的。

2:而也因为微处理器和微控制器是数字电路芯片,其是需要时钟信号才能工作。不管是内部芯片自带的低频RC振荡器还是外接晶振或者其他时钟电路,从上电到时钟电路正常起振也是需要时间的。可以看下图我用示波器测到的:ARM9上电那几百毫秒内,电源输入VCC对地电压(黄线)、及18.492M时钟(绿线)引脚对地电压发生的情况。可以看到芯片在给电的10毫秒内电源开始升到正常供电水平,但至少500毫秒后晶振才开始正常输出时钟(之前的虽然有时钟信号,也可以让CPU工作,但波形不稳定,按此状态运行的CPU容易出错)

所以,需要在芯片上电的时候给复位端一个复位信号让微处理器和微控制器内部的CPU在刚上电那段时间不要工作。



这叫上电复位,上电复位是微处理器或微控制器都必须存在的一个重要操作,没有这个操作CPU直接上电工作的话非常容易出错(程序跑飞、寄存器数据错误……)。

所以,51一般都使用阻容复位来让其cpu在上电后在复位重启一次。如下图,去掉SW-PB和R6就是一个普通的51阻容复位,上电瞬间因为电容的压降不可突变的原理,电容等同导通。电容C23和电阻R27之间RESET点的电位就是VC5的电压,一直使能复位端。上电后VC5对C23充电,RESET点的电位降低趋近于GND的电平,后复位解除CPU开始正常工作。(其实这图的R27有点大,C23有点小)




(而很多的低电平复位的芯片、如AVR、PIC等,都之需要在复位引脚上拉一个4.7K~10K的电阻即可。而ARM的复位时间较长,一般用专用的复位芯片)

======================
按键复位:
51的按键复位则是在阻容复位的基础上增加了一个人工干预复位端的按钮和一个限流电阻。如下图,当正常工作的时候,复位端RST和+5V,等同于断开,通过R7接地。当复位按钮按下,复位端RST和+5V几乎连起来,高电平使能芯片复位。并且释放电容C的电能。
R6的作用是不让电源+5直接冲击芯片的复位端(直接冲击可能会损害芯片,特别是8051这种IO驱动能力较弱的芯片),并且防止电容C因短路放电过快而被损坏。

按键复位电路的目的一般是为了开发者在调试电路或程序时候使用,也有在成型的产品使用过程中使其硬复位的功能,比如一些电脑还带有复位按钮,按一下机器强行复位,就是这个原理,当然电脑的复位按键后面的电路远复杂于这个,不仅仅是复位一个芯片,主板上的其他芯片也会被强行复位)
(而且ARM和电脑CPU芯片一般不会直接用类似这种按键复位电路,使用专用复位芯片有自带的按键接口引脚接按键)

这篇关于阻容复位和按键复位 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370094

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

web群集--nginx配置文件location匹配符的优先级顺序详解及验证

文章目录 前言优先级顺序优先级顺序(详解)1. 精确匹配(Exact Match)2. 正则表达式匹配(Regex Match)3. 前缀匹配(Prefix Match) 匹配规则的综合应用验证优先级 前言 location的作用 在 NGINX 中,location 指令用于定义如何处理特定的请求 URI。由于网站往往需要不同的处理方式来适应各种请求,NGINX 提供了多种匹