全球10米土地覆盖产品(ESA)数据集2020和2021年

2023-11-08 11:28

本文主要是介绍全球10米土地覆盖产品(ESA)数据集2020和2021年,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

全球10米土地覆盖产品(ESA)来源于欧空局,是基于哨兵一号、哨兵二号数据制作的2020年的10m分辨率的全球土地覆盖数据。土地利用数据一共分为11类,分别是:林地、灌木、草地、耕地、建筑、裸地/稀疏植被区、雪和冰、开阔水域、草本湿地、红树林、苔藓。经验证,数据精度达到74.4%。前言 – 人工智能教程

欧洲空间局的全球10米土地覆盖产品(ESA's Global Land Cover)是一种高分辨率土地覆盖数据集,采用多源遥感数据和机器学习算法生成。这个数据集提供了全球每个地方在特定时间的土地覆盖类型信息,包括树林、草地、农田、城市、水域等。这个数据集对于环境监测、自然资源管理、气候变化研究等方面十分有用。前言 – 人工智能教程

全球10米土地覆盖数据在以下方面具有重要作用:

1. 环境监测:该数据集可用于监测土地利用变化、森林覆盖率变化和自然保护区的扩张,以帮助开展环境监测和保护工作。

2. 自然资源管理:该数据集可用于协助管理自然资源,如农业、林业、水资源等。这有助于制定农业政策、合理管理林区、划定保护区域以及管理水资源。

3. 气候变化研究:土地覆盖与气候变化是密切相关的。该数据集可用于检测气候变化、制定减缓策略和适应措施,并评估这些措施的效果。

4. 城市规划:由于全球城市化进程加速,对城市规划的需求也增加了。该数据集可用于城市规划和土地利用规划,以制定高效城市化和公平城市化的政策。

5. 地球科学:全球10米土地覆盖数据对于地球科学研究也具有重要意义,如土地地貌、岩性、土地退化、地震地质等方面的研究。

数据集ID: 

ESA/WORLD_COVER_2020

时间范围: 2020年-2020年

范围: 全球

来源: ESA WorldCover project 2020

复制代码段: 

var images = pie.ImageCollection("ESA/WORLD_COVER_2020")

波段 

名称类型无效值空间分辨率(m)描述信息
B1Byte010m全球10米土地覆盖产品(ESA),类别信息见下表
类别代码
Tree Cover10
Shrubland20
Grassland30
Cropland40
Built-up50
Bare/sparse vegetation60
Snow and ice70
Permanent water bodies80
Herbaceous wetland90
Mangroves95
Moss and lichen100

代码:

/*** @File    :   全球10米土地覆盖产品(ESA)* @Time    :   2021/11/26* @Author  :   pieadmin* @Version :   1.0* @Contact :   400-890-0662* @License :   (C)Copyright 航天宏图信息技术股份有限公司* @Desc    :   加载全球10米土地覆盖产品(ESA)数据集*///加载显示北京市矢量边界数据
var bj = pie.FeatureCollection("NGCC/CHINA_CITY_BOUNDARY").filter(pie.Filter.eq("name", "北京市")).first().geometry();
Map.centerObject(bj, 9);
Map.addLayer(bj, {color: "ff0000ff", fillColor: "00000000", width: 1}, "北京市");//加载显示全球10米土地覆盖产品(ESA)数据集并筛选耕地
var img = pie.ImageCollection('ESA/WORLD_COVER_2020')
var img = pie.ImageCollection('ESA/WORLD_COVER_2021').select("B1").filterBounds(bj).mean().clip(bj).eq(40);
var visParam = {min: 0,max: 1,palette: ['000000','9acd32']
};
//加载显示耕地
Map.addLayer(img.updateMask(img.eq(1)),visParam, "crop")

文章引用:


Zanaga,D.,Van De Kerchove,R.,De Keersmaecker,W.,Souverijns,N.,Brockmann,C.,Quast,R.,Wevers,J.,Grosu,A.,Paccini,A.,Vergnaud,S.,Cartus,O.,Santoro,M.,Fritz,S.Georgieva,I.,Lesiv,M.,Carter,S.,Herold,M.,Li,Linlin,Tsendbazar,N.E.,Ramoino,F.,Arino,O.,2021.ESA WorldCover 10 m 2020 v100.https://doi.org/10.5281/zenodo.5571936

 

这篇关于全球10米土地覆盖产品(ESA)数据集2020和2021年的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369540

相关文章

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt