强烈推荐:一文洞悉Python必备50种算法

2023-11-08 11:20

本文主要是介绍强烈推荐:一文洞悉Python必备50种算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是一些机器人算法(特别是自动导航算法)的Python代码合集。

其主要特点有以下三点:选择了在实践中广泛应用的算法;依赖最少;容易阅读,容易理解每个算法的基本思想。希望阅读本文后能对你有所帮助。

前排友情提示,文章较长,建议收藏后再看。在这里给大家推荐一个python系统学习q群:250933691有免费开发工具以及初学资料,(数据分析,爬虫,AI,  机器学习,神经网络)每天有老师给大家免费授课,欢迎一起交流学习。

目录

一、环境需求

二、怎样使用

三、本地化

    3.1 扩展卡尔曼滤波本地化

    3.2 无损卡尔曼滤波本地化

    3.3 粒子滤波本地化

    3.4 直方图滤波本地化

四、映射

    4.1 高斯网格映射

    4.2 光线投射网格映射

    4.3 k均值物体聚类

    4.4 圆形拟合物体形状识别

五、SLAM

    5.1 迭代最近点匹配

    5.2 EKF SLAM

    5.3 FastSLAM 1.0

    5.4 FastSLAM 2.0

    5.5 基于图的SLAM

六、路径规划

    6.1 动态窗口方式

    6.2 基于网格的搜索

迪杰斯特拉算法

A*算法

势场算法

    6.3 模型预测路径生成

路径优化示例

查找表生成示例

    6.4 状态晶格规划

均匀极性采样(Uniform polar sampling)

偏差极性采样(Biased polar sampling)

路线采样(Lane sampling)

    6.5 随机路径图(PRM)规划

    6.6 Voronoi路径图规划

    6.7 快速搜索随机树(RRT)

基本RRT

RRT*

基于Dubins路径的RRT

基于Dubins路径的RRT*

基于reeds-shepp路径的RRT*

Informed RRT*

批量Informed RRT*

闭合回路RRT*

LQR-RRT*

6.8 三次样条规划

6.9 B样条规划

6.10 Eta^3样条路径规划

6.11 贝济埃路径规划

6.12 五次多项式规划

6.13 Dubins路径规划

6.14 Reeds Shepp路径规划

6.15 基于LQR的路径规划

6.16 Frenet Frame中的最优路径

七、路径跟踪

7.1 姿势控制跟踪

7.2纯追迹跟踪

7.3 史坦利控制

7.4 后轮反馈控制

7.5 线性二次regulator(LQR)转向控制

7.6 线性二次regulator(LQR)转向和速度控制

7.7 模型预测速度和转向控制

八、项目支

一、环境需求

Python 3.6.x

numpy

scipy

matplotlib

pandas

cvxpy 0.4.x

二、怎样使用

  1.安装必要的库;

  2.克隆本代码仓库;

  3.执行每个目录下的python脚本;

  4.如果你喜欢,则收藏本代码库:

三、本地化

3.1 扩展卡尔曼滤波本地化

该算法利用扩展卡尔曼滤波器(Extended Kalman Filter, EKF)实现传感器混合本地化。

蓝线为真实路径,黑线为导航推测路径(dead reckoning trajectory),绿点为位置观测(如GPS),红线为EKF估算的路径。

红色椭圆为EKF估算的协方差。

3.2 无损卡尔曼滤波本地化

在这里给大家推荐一个python系统学习q群:250933691有免费开发工具以及初学资料,(数据分析,爬虫,AI,  机器学习,神经网络)每天有老师给大家免费授课,欢迎一起交流学习。

该算法利用无损卡尔曼滤波器(Unscented Kalman Filter, UKF)实现传感器混合本地化。

线和点的含义与EKF模拟的例子相同。

相关阅读:

利用无差别训练过的无损卡尔曼滤波进行机器人移动本地化

https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization

3.3 粒子滤波本地化

该算法利用粒子滤波器(Particle Filter, PF)实现传感器混合本地化。

蓝线为真实路径,黑线为导航推测路径(dead reckoning trajectory),绿点为位置观测(如GPS),红线为PF估算的路径。

该算法假设机器人能够测量与地标(RFID)之间的距离。

PF本地化会用到该测量结果。

3.4 直方图滤波本地化

该算法是利用直方图滤波器(Histogram filter)实现二维本地化的例子。

红十字是实际位置,黑点是RFID的位置。

蓝色格子是直方图滤波器的概率位置。

在该模拟中,x,y是未知数,yaw已知。

滤波器整合了速度输入和从RFID获得距离观测数据进行本地化。

不需要初始位置。

相关阅读:

概率机器人学

http://www.probabilistic-robotics.org/

四、映射

4.1 高斯网格映射

本算法是二维高斯网格映射(Gaussian grid mapping)的例子。

4.2 光线投射网格映射

本算法是二维光线投射网格映射(Ray casting grid map)的例子。

4.3 k均值物体聚类

本算法是使用k均值算法进行二维物体聚类的例子。

4.4 圆形拟合物体形状识别

本算法是使用圆形拟合进行物体形状识别的例子。

蓝圈是实际的物体形状。

红叉是通过距离传感器观测到的点。

红圈是使用圆形拟合估计的物体形状。

五、SLAM

同时本地化和映射(Simultaneous Localization and Mapping,SLAM)的例子。

5.1 迭代最近点匹配

本算法是使用单值解构进行二维迭代最近点(Iterative Closest Point,ICP)匹配的例子。

它能计算从一些点到另一些点的旋转矩阵和平移矩阵。

 

5.2 EKF SLAM

这是基于扩展卡尔曼滤波的SLAM示例。

蓝线是真实路径,黑线是导航推测路径,红线是EKF SLAM估计的路径。

绿叉是估计的地标。

 

5.3 FastSLAM 1.0

这是用FastSLAM 1.0进行基于特征的SLAM的示例。

蓝线是实际路径,黑线是导航推测,红线是FastSLAM的推测路径。

红点是FastSLAM中的粒子。

黑点是地标,蓝叉是FastLSAM估算的地标位置。

 

5.4 FastSLAM 2.0

这是用FastSLAM 2.0进行基于特征的SLAM的示例。

动画的含义与FastSLAM 1.0的情况相同。

 

Tim Bailey的SLAM模拟

http://www-personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm

5.5 基于图的SLAM

这是基于图的SLAM的示例。

蓝线是实际路径。

黑线是导航推测路径。

红线是基于图的SLAM估算的路径。

黑星是地标,用于生成图的边。

 

六、路径规划

6.1 动态窗口方式

这是使用动态窗口方式(Dynamic Window Approach)进行二维导航的示例代码。

 

6.2 基于网格的搜索

迪杰斯特拉算法

这是利用迪杰斯特拉(Dijkstra)算法实现的基于二维网格的最短路径规划。

动画中青色点为搜索过的节点。

A*算法

下面是使用A星算法进行基于二维网格的最短路径规划。

动画中青色点为搜索过的节点。

启发算法为二维欧几里得距离。

势场算法

下面是使用势场算法进行基于二维网格的路径规划。

动画中蓝色的热区图显示了每个格子的势能。

 

6.3 模型预测路径生成

下面是模型预测路径生成的路径优化示例。

算法用于状态晶格规划(state lattice planning)。

路径优化示例

查找表生成示例

 

6.4 状态晶格规划

这个脚本使用了状态晶格规划(state lattice planning)实现路径规划。

这段代码通过模型预测路径生成来解决边界问题。

相关阅读:

用于带轮子的机器人的最优不平整地形路径生成

http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328

用于复杂环境下的高性能运动机器人导航的可行运动的状态空间采样

http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf

均匀极性采样(Uniform polar sampling)

偏差极性采样(Biased polar sampling)

路线采样(Lane sampling)

6.5 随机路径图(PRM)规划

这个随机路径图(Probabilistic Road-Map,PRM)规划算法在图搜索上采用了迪杰斯特拉方法。

动画中的蓝点为采样点。

青色叉为迪杰斯特拉方法搜索过的点。

红线为PRM的最终路径。

 

6.6 Voronoi路径图规划

这个Voronoi路径图(Probabilistic Road-Map,PRM)规划算法在图搜索上采用了迪杰斯特拉方法。

动画中的蓝点为Voronoi点。

青色叉为迪杰斯特拉方法搜索过的点。

红线为Voronoi路径图的最终路径。

 

6.7 快速搜索随机树(RRT)

基本RRT

这是个使用快速搜索随机树(Rapidly-Exploring Random Trees,RRT)的简单路径规划代码。

黑色圆为障碍物,绿线为搜索树,红叉为开始位置和目标位置。

RRT*

这是使用RRT*的路径规划代码。

黑色圆为障碍物,绿线为搜索树,红叉为开始位置和目标位置。

 

基于Dubins路径的RRT

为汽车形机器人提供的使用RRT和dubins路径规划的路径规划算法。

基于Dubins路径的RRT*

为汽车形机器人提供的使用RRT*和dubins路径规划的路径规划算法。

基于reeds-shepp路径的RRT*

为汽车形机器人提供的使用RRT*和reeds shepp路径规划的路径规划算法。

Informed RRT*

这是使用Informed RRT*的路径规划代码。

青色椭圆为Informed RRT*的启发采样域。

 

批量Informed RRT*

这是使用批量Informed RRT*的路径规划代码。

相关阅读:

批量Informed树(BIT*):通过对隐含随机几何图形进行启发式搜索实现基于采样的最优规划

https://arxiv.org/abs/1405.5848

闭合回路RRT*

使用闭合回路RRT*(Closed loop RRT*)实现的基于车辆模型的路径规划。

这段代码里,转向控制用的是纯追迹算法(pure-pursuit algorithm)。

速度控制采用了PID。

相关阅读:

使用闭合回路预测在复杂环境内实现运动规划

http://acl.mit.edu/papers/KuwataGNC08.pdf)

应用于自动城市驾驶的实时运动规划

http://acl.mit.edu/papers/KuwataTCST09.pdf

[1601.06326]采用闭合回路预测实现最优运动规划的基于采样的算法

https://arxiv.org/abs/1601.06326

LQR-RRT*

这是个使用LQR-RRT*的路径规划模拟。

LQR局部规划采用了双重积分运动模型。

 

6.8 三次样条规划

这是段三次路径规划的示例代码。

这段代码根据x-y的路点,利用三次样条生成一段曲率连续的路径。

每个点的指向角度也可以用解析的方式计算。

6.9 B样条规划

这是段使用B样条曲线进行规划的例子。

输入路点,它会利用B样条生成光滑的路径。

第一个和最后一个路点位于最后的路径上。

 

6.10 Eta^3样条路径规划

这是使用Eta ^ 3样条曲线的路径规划。

 

6.11 贝济埃路径规划

贝济埃路径规划的示例代码。

根据四个控制点生成贝济埃路径。

改变起点和终点的偏移距离,可以生成不同的贝济埃路径:

 

6.12 五次多项式规划

利用五次多项式进行路径规划。

它能根据五次多项式计算二维路径、速度和加速度。

 

6.13 Dubins路径规划

Dubins路径规划的示例代码。

 

6.14 Reeds Shepp路径规划

Reeds Shepp路径规划的示例代码。

 

6.15 基于LQR的路径规划

为双重积分模型使用基于LQR的路径规划的示例代码。

6.16 Frenet Frame中的最优路径

这段代码在Frenet Frame中生成最优路径。

青色线为目标路径,黑色叉为障碍物。

红色线为预测的路径。

 

七、路径跟踪

7.1 姿势控制跟踪

这是姿势控制跟踪的模拟。

 

使用纯追迹(pure pursuit)转向控制和PID速度控制的路径跟踪模拟。

红线为目标路线,绿叉为纯追迹控制的目标点,蓝线为跟踪路线。

 

7.3 史坦利控制

使用史坦利(Stanley)转向控制和PID速度控制的路径跟踪模拟。

 

7.4 后轮反馈控制

利用后轮反馈转向控制和PID速度控制的路径跟踪模拟。

 

 

7.5 线性二次regulator(LQR)转向控制

使用LQR转向控制和PID速度控制的路径跟踪模拟。

 

7.6 线性二次regulator(LQR)转向和速度控制

使用LQR转向和速度控制的路径跟踪模拟。

 

7.7 模型预测速度和转向控制

使用迭代线性模型预测转向和速度控制的路径跟踪模拟。

这段代码使用了cxvxpy作为最优建模工具。

 

八、项目支持

可以通过Patreon(https://www.patreon.com/myenigma)对该项目进行经济支持。

如果你在Patreon上支持该项目,则可以得到关于本项目代码的邮件技术支持。

在这里给大家推荐一个python系统学习q群:250933691有免费开发工具以及初学资料,(数据分析,爬虫,AI,  机器学习,神经网络)每天有老师给大家免费授课,欢迎一起交流学习。

这篇关于强烈推荐:一文洞悉Python必备50种算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369510

相关文章

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(