数据解读广大“钢铁直男”眼中的女神评判标准(文末有彩蛋)

2023-11-08 10:31

本文主要是介绍数据解读广大“钢铁直男”眼中的女神评判标准(文末有彩蛋),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640

作者介绍:徐麟,目前就职于互联网公司数据部,哥大统计数据狗,从事数据挖掘&分析工作,喜欢用R&Python玩一些不一样的数据

个人公众号:数据森麟(ID:shujusenlin),知乎同名专栏作者。

前言

本文图片来自于“懂球帝”APP

640

笔者作为一位喜爱足球的球迷,“懂球帝”一定会是款必不可少的app,即使是只有16G的空间,也从未将其卸载。然而我们今天聊的与足球无关,而是去聊懂球帝上的“女神大会”专栏,作为一个大型“钢铁直男”聚集地,“懂球帝”上对各位女神的评分,对广大“钢铁直男”群体也具有一定代表性。

数据来源

目前女神大会更新至了第90期,总共出场了90位女神,界面如下:

640

我们通过fiddler获取该界面中女神的照片地址以及每一篇文章的id编号,用于之后的爬取和可视化,代码如下:

import json
import requests
from bs4 import BeautifulSoup
import pandas as pd
import re
import os
os.chdir('D:/爬虫/女神')id_list = []
title_list = []
pic_list = []
date_list=[]for i in range(1,6):url= 'http://api.dongqiudi.com/search?keywords=%E5%A5%B3%E7%A5%9E%E5%A4%A7%E4%BC%9A&type=all&page='+str(i) html = requests.get(url=url).contentnews = json.loads(html.decode('utf-8'))['news']this_id = [k['id'] for k in news]this_pic = [k['thumb'] for k in news]this_title = [k['title'] for k in news]this_date = [k['pubdate'] for k in news]this_title=[BeautifulSoup(k,"html.parser").text for k in this_title]id_list = id_list+this_idtitle_list = title_list+this_titlepic_list = pic_list+this_picdate_list = date_list+this_date

另一方面,每位女神的评分都在下一期当中,我们需要爬取文章内容进行获取:

640

爬取代码如下:

prev_title_list = []
score_list=[]
count_list=[]
for id in id_list:url = 'http://www.dongqiudi.com/archive/{k}.html'.format(k=id)    header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win32; x32; rv:54.0) Gecko/20100101 Firefox/54.0','Connection': 'keep-alive'}cookies ='v=3; iuuid=1A6E888B4A4B29B16FBA1299108DBE9CDCB327A9713C232B36E4DB4FF222CF03; webp=true; ci=1%2C%E5%8C%97%E4%BA%AC; __guid=26581345.3954606544145667000.1530879049181.8303; _lxsdk_cuid=1646f808301c8-0a4e19f5421593-5d4e211f-100200-1646f808302c8; _lxsdk=1A6E888B4A4B29B16FBA1299108DBE9CDCB327A9713C232B36E4DB4FF222CF03; monitor_count=1; _lxsdk_s=16472ee89ec-de2-f91-ed0%7C%7C5; __mta=189118996.1530879050545.1530936763555.1530937843742.18'cookie = {}for line in cookies.split(';'):name, value = cookies.strip().split('=', 1)cookie[name] = value    html = requests.get(url,cookies=cookie, headers=header).contenttry:content = BeautifulSoup(html.decode('utf-8'),"html.parser")score = content.find('span',attrs={'style':"color:#ff0000"}).textprev_title = content.find('a',attrs={"target": "_self"}).textprev_title_list.append(prev_title)score_list.append(score)sentence = content.text.split(',')count=[k for k in sentence if re.search('截至目前',str(k))][0]count_list.append(count)except:continue

整体对比

我们此次利用R语言中的ggimage包,将获取到的女神图片加入到最终的图表中,提高可视化效果,首先看一下整体评分的TOP15名单:

640

朱茵、林志玲、高圆圆位居榜单前三位,不知道这份榜单是否符合你心目中的女神标准,而这三位也恰好成为了目前出场的90位女星当中香港、台湾、大陆的最高分。值得一提的是,懂球帝小编对于活跃于90年代的香港女星情有独钟,从中选取了非常多的女神,而这些女神的评分也都名列前茅。

下面看一下目前出场的90位女神中,排名相对靠后的几位:

640

很多朋友会觉得这份榜单对于年轻女神有些苛刻,可能这也代表了广大网友对于各位年轻女神的美好期许,体现了她们未来的无限可能。

区域对比

我们分区域看一下目前各个区域排名前十的名单:

640

640

640

640

看完了各个区域TOP10的名单之后,我们进行一下区域的对比:

640

我们将小提琴图与盒形图相结合,进行区域的对比,可以看到大陆女星的评分相对偏低,一方面是由于部分女神的评分较低,拉低了整体的分值,另一方面也是由于目前出场的大陆女星年龄普遍偏小,而这一点也会在下一部分得到证实

年份对比

我们看一下各个年份出生的女星总体评分情况对比,其中“60后”选项也包含了60前的女神,“90后”选项也包含了00后的女神

640

可以看到60后、70后的女神们平均分数要高于80后,而80后显著高于90后,一方面说明了大家对老牌女神们的认可,另一方面也是体现了大家对新生女神们的无限期许

我们下面将区域与年份综合起来进行对比:

640

可以看到参与评分的大陆女神普遍比较年轻,这也一定程度解释了此前提到的大陆女神整体评分偏低的原因。而港台女神普遍集中在60、70后,这些女神们活跃的90年代也是香港电影、电视的黄金时期,我们也期待着香港影视未来的复苏

后记

懂球帝目前的女神大会做到了90期,并没有十分完整地囊括广大女神,比如“四旦双冰”就都没有出现,使得这次的数据并不能完全地表述广大“钢铁直男”心中的女神标准,未来随着期数的增加,相信会有更加完善的分析

最后,小编突发奇想,想要看下在一周中不同时间出场的女神评分是否会有区别:

640

出乎小编意料的是,在小编一周中最开心的三天周四(即将放假),周五(迎接放假),周六(享受放假)的三天中出场的女神评分反而偏低,或许是由于数据量偏少,未来随着期数的增加,小编也会密切关注这点。

彩蛋

评论并转发这篇文章,获得点赞数最多的两位读者可以从下面链接中出现的书籍任选一本作为奖品: ,要求评论超过25字,并与本文相关,截止时间为12月19日21点

公众号后台回复“女神”可以获取本文代码地址

◆ ◆ ◆  ◆ ◆

数据森麟
长按二维码关注我们



数据森麟公众号的交流群已经建立,许多小伙伴已经加入其中,感谢大家的支持。大家可以在群里交流关于数据分析&数据挖掘的相关内容,还没有加入的小伙伴可以通过扫描下方管理员二维码,让管理员帮忙拉进群,期待大家的加入。

管理员二维码:

猜你喜欢

● 

● 

● 

● 

   ● 

这篇关于数据解读广大“钢铁直男”眼中的女神评判标准(文末有彩蛋)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369236

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据